潘犀 教授
Pan,Ci-Ling

 

個人網站
辦公室電話:03-5742275 (物理館231)
研究室電話:03-5162576 (物理館218)
實驗室電話:03-5742552 (物理館219)
傳真03-5162576
E-mail
clpan@phys.nthu.edu.tw
實驗室網站http://www.phys.nthu.edu.tw/~clpanlab/


學歷

● Ph.D. in Physics , Colorado State University, Ft. Collins, Colorado , U.S.A. (1975-1979)
● M.S. in Physics , Colorado State University, Ft. Collins, Colorado , U.S.A. (1973-1975)
● 東海大學物理系學士 (1967-1971 )

現職與經歷

現職:
● 國立清華大學研發長(2014/1-)
● 國立清華大學物理系教授兼清華講座 (2009/02-)
● 國立清華大學光電所合聘教授 (2009/02-)

經歷:

● 國立清華大學光電研究中心主任 (2009/08-2014/11)
● 國立清華大學物理系主任 (8/2011 to 1/2014)

● 國立交通大學講座教授 (11/2003 to 1/2009)
● 國立交通大學光電工程學系系主任 (8/2004 to 7/2006)
● 國立交通大學光電工程研究所教授 (8/1987 to 1/2009)
● 國立交通大學光電工程研究所所長 (8/1992 to 7/1995)
● 國立交通大學光電工程研究所副教授 (2/1981 to 7/1987)
● 國科會光電學門召集人 (1/1996 to 12/1999)
● 香港中文大學電子工程學系訪問教授 (1/2008 to 6/2008)
● 日本大阪大學雷射工學研究所客員教授 (3/2004 to 6/2004)
● 美國加州大學柏克萊分校訪問學者 (2/1986 to 1/1987)
● 美國科羅拉多州立大學化學系博士後研究員 (8/1979 to 1/1981)
● 中華民國海軍陸戰隊少尉兵工官 (7/1971 to 6/1973)

榮譽與獎項

學術獎
國科會傑出研究獎(1990-1992,1992-1994,1994-1996)
國科會特約研究員(1997-2002)
國科會傑出特約研究員獎(2002)教育部第48屆學術獎(2004)

其他榮譽
● 斐陶斐榮譽學會會員 (1991迄今)
● 華人光電學會(Photonic Society of Chinese Americans, PSC)Fellow (1998)
   Fellow citation: “For his outstanding contribution in ultrafast optics and optoelectronics,
   in particular the development of dual wavelength lasers and GaAs:As+ photoconductors”
● 有庠科技講座(通訊光電)(2003)
● 美國光學學會(OSA, the Optical Society)Fellow (2004)
   Fellow Citation: “For contributions to ultrafast optoelectronics, tunable and multi-wavelength
   lasers, leadership of optical and photonics research and education”.
● 國際光學工程學會(International Society for Optical Engineering, SPIE)Fellow (2004)
   Fellow Citation: “For contributions to ultrafast optoelectronics, tunable and multi-wavelength
   lasers, leadership of optical and photonics research and education”.
● 中華民國光學工程學會工程獎章(2004)
● 中華民國物理學會會士(2005)
   Fellow Citation: “超快雷射與兆赫波物理及工藝上,貢獻卓越”
● 中國工程師學會傑出工程教授獎(2006)
● 潘文淵文教基金會研究傑出獎 (2007)
● 領導學術追求卓越團隊及研究成果入選「科學50」– 國科會50科學成就(2008)

● 台聯大系統講座(2009-2011)
● 美國物理學會(APS, American Physical Society) Fellow (2009)
   Fellow Citation: “For pioneering studies of the physics and technology of ion-planted semiconductor and liquid-crystal devices for ultrafast and THz applications, and for significant contributions toward developing tunable and ultrafast laser systems for applications in communications, sensing, spectroscopy and materials diagnostics and processing.”.
Fellow, IEEE (2012), Fellow Citation: "For pioneering contributions in optoelectronic and liquid crystal devices for ultrafast and THz photonics,"
● 東元科技文教基金會第十九屆東元獎 (2012)
● 傑出人才發展基金會101學年度第一期傑出人才講座 (2012)

東海大學傑出校友 (2013)

亞太材料學院院士 (2013)

研究領域

  1. Laser Science (雷射科學)

  2. Ultrafast Optics and Optoelectronics (超快光學與光電子學)

  3. THz Optics and Photonics (兆赫光學與光子學)

  4. Liquid Crystal Optics and Photonics (液晶光學與光子學)

研究興趣與成果 (Updated on August 1, 2015)

[ 1 ] 功能性兆赫光電元件及其應用之研究(科技部 MOST, Aug. 1, 2015-July 31, 2018

       本計畫的宗旨是研發未來後5G 網路中,結合光纖與無線技術的先進網路架構所需的各種功能性兆赫光學元件、系統並探索各種應用,研發成果的可能的重要應用包含: (一) 經由光纖提供多元化的兆位元 (multi-gigabit) 無線通訊服務; (二) 應用光學技術產生毫米波與兆赫波無線通訊以及訊號處理技術; (三)。三維超高解析度的光電式次兆赫波(毫米波)即時雷達影像系統的關鍵元件與技術。
 

 

[ 2 ] 強場同調兆赫輻射之產生及應用之研究( 科技部 MOST, Aug. 1, 2015 - July 31, 2016

      最近,兆赫科技突飛猛進;我們巳可考慮在較強THz 光場下物質與兆赫波的交互作用、並探討單一兆赫光子特性及其應用。在本計劃中,我們提議研究兆赫非線性與量子光子學的一些重要課題:我們研究新穎兆赫波源,包括(1)窄頻寬(<1 MHz)功率達1-10 mW 和可調頻範圍(0.5-2 THz)的連續輸出型兆赫波,此類型的光源將有益於高解析度光譜分析及量子光學研究;(2)重複率 ~ 15 MH下脈衝能量達 0.3 mJ 之強場兆赫波脈衝。如此之兆赫波脈衝源可做為研究兆赫波段下光與物質間非線性交互作用的工具,如各種非線性光學過程與重要材料(基於氮化物半導體的量子級聯雷射結構,拓樸絕緣體等)之載子動態行為。短至澤秒 (zeptosecond,1 zs = 10-21s) 脈衝也可藉由結合兆赫波之諧波至光學高階諧波頻譜之光頻梳產生。我們也研究如何產生單光子態的兆赫波。除了利用實驗方法研究兆赫波光子的量子性質,我們也將發展兆赫波下轉換的理論。
 

 

[ 3 ] 產學合作計畫-先進光纖雷射系統及其產業應用之研發(3/3)( 虹竣科技有限公司、卓越成功股份有限公司、科技部 MOST, June 1, 2015 - May 31, 2016

        近年來,由於政府推行節能減碳,因此固態照明、太陽能電池產業以及半導體產業對高速晶片切劃有極大的需求,所以傳統的鑽石切割以無法負荷如此龐大且要求迅速的市場。而近十年以來,雷射加工已被證實為相當便利以及有效率的加工工具,但雷射加工機的關鍵元件:雷射光源仍大多進口於國外。因此,如何將此技術於國內發展,便是相當重要的課題。
      本計畫與知名的虹竣科技、卓越成功公司SPC 共同合作,研發高功率超短脈衝(亞皮秒至飛秒)摻鐿光纖雷射,再經由非線性頻率轉換技術將之轉換至綠光(532 nm)或更進一步至紫外光(266 nm),以應用於各種工業需求之中。
      在第三年度計畫中,光纖雷射將操作在1kHz 至250MHz 的脈衝重複率之下,脈衝寬度分為1-50ns, 1-50 ps, 100-500fs。同時,我們將提高脈衝能量達到100 μJ,並完成太陽能電池切劃實驗,且將四倍頻(266 nm)效率提高至10%。DMD 系統將達到5 GHz/km 的頻寬,並展示可攜式的DMD 系統。

 

 


代表著作

1.    F. Ganikhanov, G. -R. Lin, W. -C. Chen, C. -S. Chang, and Ci-Ling Pan*, “Subpicosecond carrier lifetimes in arsenic-ion-implanted GaAs,” Appl. Phys. Lett., vol. 67, No. 23, pp. 3465 - 3467, Dec. 4, 1995 (One of the first papers demonstrating the potential of GaAs:As+ as an ultrafast photoconductor). See also, Gong-Ru Lin, Wen-Chung Chen, Shyh-Chin Chao, C.-S. Chang, Kaung-Hsiung Wu, T. M. Hsu, W. C. Lee, and , Ci-Ling Pan* “Material and Ultrafast Optoelectronic Properties of Highly Resistive Arsenic-ion-implanted GaAs,” IEEE J. Quantum Electron., Vol. 34, No. 9, pp. 1740 - 1748, September, 1998.

2.    Chi-Leun Wang and Ci-Ling Pan*, "Tunable Dual-wavelength Operation of a Diode Array with an External Grating-loaded Cavity", Appl. phys. Lett. Vol. 64, No. 23, pp. 3089 - 3091, June 6, 1994 (Generic laser cavity design for collinear, linearly polarized, tunable dual-wavelength output). See also, Ci-Ling Pan and Chi-Luen Wang, “A novel tunable dual-wavelength external-cavity laser diode array and its applications,” invited paper, Optical and Quantum Electronics Vol. 28, No. 10, pp. 1239 - 1257, October 1996, U.S. Patent. 5,524,012.

3.    T. R. Tsai, C. Y. Chen, C.-L. Pan*, R.-P. Pan and X.-C. Zhang, “THz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB,” Appl. Opt., Vol. 42, No. 13, pp. 2372-2376, May 2003 (The first THz-TDS studies of nematic liquid crystal and shows that birefringence of NLC at THz frequencies is as large as that in the visible, thus opening possibilities of applications of LC in THz photonics). See also, Chan-Shan Yang, Chia-Jen Lin, Ru-Pin Pan*, Christopher Que, Kohji Yamamoto, Masahiko Tani, and Ci-Ling Pan*, “The Complex Refractive Indices of the Liquid Crystal Mixture E7 in the THz Frequency Range,” J. Opt. Soc. Am. B, Vol. 27, No. 9, pp. 1866-1873, September, 2010.

4.    Ci-Ling Pan*, Jin-Yuen Zhang, Jung Y. Huang, and Chao-Kuei Lee, A blue-light generating Femtosecond wavelength-tunable Non-collinear Optical Parametric Amplifier,” US patent 7106498 B2, Sept. 12, 2006. (Femtosecond laser pulses that are tunable from 380 to 460 nm are directly generated the BBO OPA crystal, Taiwan patent I239128), see also Chao-Kuei Lee, Jin-Yuan Zhang, J. Y. Huang and Ci-Ling Pan, “Generation of Femtosecond Laser Pulses Tunable from 380 nm to 465 nm via Cascaded Nonlinear Optical Mixing in a Noncollinear Optical Parametric Amplifier with a Type-I Phase Matched BBO Crystal,” Optics Express, Vol. 11, No. 14, pp. 1702-1708, July 14 2003; Chao-Kuei Lee, Jin-Yuan Zhang, J. Y. Huang and Ci-Ling Pan, “Theoretical and Experimental Studies of tunable UV/Blue Femtosecond Pulses in a 405nm-pumped Type-I b-BBO Non-collinear Optical Parametric Amplifier,” J. Opt. Soc. Am. B, Vol. 21, No. 8, pp. 1494-1499, August 2004.

5.    Chao-Yuan Chen, Cho-Fan Hsieh, Yea-Feng Lin, Ru-Pin Pan*, and Ci-Ling Pan*, “Magnetically Tunable Room-Temperature 2p Liquid Crystal Terahertz Phase Shifter,” Opt. Exp., Vol. 12, No. 12, pp. 2625-2630 June 14, 2004 (The first room-temperature tunable 2p THz phase shifter). See also Chao-Yuan Chen, Tsong-Ru Tsai, Ci-Ling Pan, and Ru-Pin Pan, “Room  Temperature Terahertz Phase Shifter Based on Magnetically Controlled Birefringence in Liquid Crystals,” Appl. Phys. Lett., Vol. 83, No. 22, pp. 4497-4499, December 1, 2003.

6.    Tze-An Liu, Masahiko Tani, and Makoto Nakajima, Ci-Ling Pan*, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett., Vol. 83, No. 7, pp. 1322-1324, August 18 2003. (broadest reported to date for antennas fabricated on ion-implanted materials) see also, Tze-An Liu, et al. “Ultrabroadband terahertz field detection by photoconductive antennas based on proton-bombarded InP,” Opt. Exp., Vol. 12, No.13, pp. 2954-2959, June 28, 2004.

7.    Yi-Chao Wang, Jia-Min Shieh, Hsiao-Wen Zan and Ci-Ling Pan* “Near-infrared femtosecond laser crystallized poly-Si thin film transistors,” Opt. Exp., Vol. 15, No. 11, pp. 6981-6986, May 28, 2007 (Demonstrated potential application of ultrafast athermal annealing for TFT applications); see also, Jia-Min Shieh, Zun-Hao Chen, Bau-Tong Dai, Yi-Chao Wang, Alexei Zaitsev, and Ci-Ling Pan*, “Near-Infrared Femtosecond Laser-induced Crystallization of Amorphous Silicon,” Appl. Phys. Lett., Volume 85, Issue 7, pp. 1232-1234, August 16, 2004.

8.    W. –J. Chen*, H. –Z. Wang, R. –Y. Lin, C. –K. Lee, and C. –L. Pan,* “Attosecond pulse synthesis and arbitrary waveform generation with cascaded harmonics of an injection-seeded high-power Q-switched Nd:YAG laser,” Laser Phys. Lett., Vol. 9, No. 3, pp. 212-218, 2012. (A simple and low-cost approach to attosecond pulse synthesis and arbitrary waveform generation). See also, Wei-Jan Chen, Jhi-Ming Hsieh, Shu Wei Huang, Hao-Yu Su, Chien-Jen Lai, Tsung-Ta Tang, Chuan-Hsien Lin, Chao-Kuei Lee, Ru-Pin Pan, Ci-Ling Pan, and A. H. Kung, “Sub-Single-Cycle Optical Pulse Train with Constant Carrier Envelope Phase,” Phys. Rev. Lett., Vol. 100, art. 163906, April 25, 2008.

9.    Yu-Tai Li, J.-W. Shi, C.-Y. Huang, N.-W. Chen, S.-H. Chen, J.-I. Chyi, Yi-Chao Wang, Chan-Shan Yang and Ci-Ling Pan*, “Characterization and Comparison of GaAs/AlGaAs Uni-Traveling Carrier and Separated-Transport-Recombination Photodiode Based High-Power Sub-THz Photonic-Transmitters,” IEEE J. Quantum Electron., Vol. 46, No. 1, pp. 19-27, January 2010. (Progress towards radio-over-fiber wireless data transmission up to 20 Gbit/s at 0.1 THz). See also, J.-W. Shi, C.-B. Huang, and Ci-Ling Pan*, “Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication,” invited review article, NPG Asia Materials, Vol. 3, No. 2, pp. 41-48, April 2011.

10.  Alexey Zaytsev*, Chih-Hsuan Lin, Yi-Jing You, Chia-Chun Chung, Chi-Luen Wang, and Ci-Ling Pan*, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Optics Express, Vol. 21, No. 13, pp. 16056-16062, July 1, 2013. (Novel fiber-laser-based approach to supercontinuum generation) See also, A. K. Zaytsev*, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang and C. L. Pan*, “Controllable noise-like operation regime in Yb:doped dispersion-mapped fiber ring laser,” Laser Phys. Lett., Vol. 10, No. 4, art. 045104, April 2013.

全部著作 (Click 展開/隱藏)

TopBack