Introduction of Our Lab    
 實 驗 室 介 紹
                                 
 

實驗室概況:

(I) 先進奈米薄膜製程實驗室


實驗室位於工研院奈米中心(67館) 下為實驗室簡圖
A.140室 : 分子束磊晶多腔超真空系統實驗室(MBE-multichamber UHV system Lab)
B.145室 : 薄膜製程與量測實驗室(Thin Film Processing and Characterication Lab)

(I) Advanced Nano Thin Film Epitaxy Lab

The Lab is located in ITRI NanoTechnology Research center (building 67).
This is the sketch of our lab:
A. Room 140 : MBE-multichamber UHV system Lab
B. Room 145 : Thin Film Processing and Characterication Lab

       
         
                                         
      Pictures:
 

圖片左方為電源供應器和一些電子控制儀器,右方依序為成長矽-鍺,成長氧化物和金屬在III-V族材料上,III-V族半導體,及在矽上成長高介電常數的介電層的各種分子束磊晶系統 。

The power supplies and electronics racks are located at the left-hand side, and Si-Ge , Oxide & Metal for III-V , III-V MBE, and High k dielectrics for Si chambers are located at the right-hand side.

       
                                         
         
   可藉由此輸送裝置將試片
 由一chamber移至另一chambe 

 In-situ UHV transfer modules
              
      試片裝卸端
Sample Load Lock End
               
                     
                                         
      常用儀器:
                                         
                           
   

分子束磊晶系統 MBE SYSTEM

分子束磊晶(MBE)為一精密的真空蒸發系統,在1975年由 Cho and Arthur發展出來的儀器.它的主要優勢是可以控制MBE成長異質結構到一個分子層的尺度,這是因為我們可以精準的控制它的成長速率在一很低的值以下(約每秒1分子層)經由控制各不同元素的shutter我們可成長各不同元素的陡峭介面。

         
      Molecular beam epitaxy (MBE) can be considered to be refined form of vacuum evaporation and was first developed, largely by Cho and Arthur(1975). The primary advantage of MBE is the capability for controlled growth of heterostructures with layer thicknesses down to a single molecular layer (ML). This is a result of the low, well- controlled growth rates, typically ~1 ML/s, combined with almost instantaneous interruption of growth using shutters over each molecular beam source.





         
                                         
 

濺鍍機
Sputtering System

濺鍍為一最常用的沉積薄膜方法.因為它只牽涉到簡易的物理過程,它較富有彈性,可依不同的需求做出調整.因此它被廣泛的應用於半導體和光電上。濺鍍機的特性是可在鍍膜時調整不同化學成分與成長不同結構的薄膜。

Sputtering is one of the most commonly used methods for the deposition of thin films. Because of its simplicity the physical processes involved, versatility of the technique, and flexibility for alteration and customization, it is widely used in the materials research. The nature of the process of sputtering makes available ions that can be utilized for tailoring the chemistry or the structure of the film.

   

電子束與熱阻絲蒸鍍系統
Electron beam and thermal evaporation system

電子束蒸鍍與熱蒸鍍為鍍金屬膜中很普遍的方法,顧名思義,電子束蒸鍍即是利用高壓電子束直接轟擊放置於坩鍋內之材料,如常用的鋁、鈦、鎳、金、鉑等,使其分離出來沉積於目標基材上,大部分的金屬皆可利用此方法來蒸鍍。而熱蒸鍍則是利用鎢舟加熱所要蒸鍍之材料,如金、鈀等,到達其沸點後開始鍍膜。

Electron beam and thermal evaporation systems are broadly used for metal deposition. By introducing a high voltage electron beam to the sources, metals like Al, Ti, Ni, Au, etc, can then be evaporated to the substrate. Thermal evaporation is conducted by heating a tungsten boat to the boiling point to evaporate the metal sources like Au, Pd, etc.

             
                                         
    
黃光室



  
           
 

紫外光臭氧清潔機是利用在加熱的環境下,紫外光跟臭氧的作用,來達到去除基材上的有機物,如光阻等。
UV-OZONE stripper/cleaner uses a unique combination of ultraviolet radiation, ozone, and heat to gently, yet effectively, remove organic materials from substrates.

 

 


 

光學顯微鏡,具備上下光源明暗視野功能,十倍目鏡搭配五至一百倍之物鏡,最大放大倍率為一千倍。
Optical Microscope with incident bright field/dark field illumination tube and microscope frame for transmitted and reflected light microscopy. Wide field eyepiece of 10X plus objective ranging from 5X to 100X, giving a max 1000X in amplification.

 

 

 

ABM接觸式光罩對準曝光機為黃光微影製程用,藉由500瓦之(深)紫外光光源,搭配濾鏡控制之365/405奈米波長,曝照光阻以達到於試片上製造圖樣的效果,曝光顯影出之線寬可達0.5微米。
ABM contact mask aligner and exposure system, featuring a 500 Watt DUV/NUV Light source with inclusive mirror sets for 365/405 nm wavelength, is used for photo resist patterning down to 0.5μm in spacing.

 

 

                 
  (II) 物性量測實驗室

實驗室位於清華大學物理館205室

物理性質量測系統 (Physical Property Measurement System ,PPMS)


物理性質量測系統是一台可以在控制溫度加磁場的情況下量測電信的儀器,其優點在於本身可冷凝氦氣而形成液態氦的功能,減少液態氦損耗,並可自行生產維持液態氦的存量。

Physical property measurement system (PPMS) is a convenient instrument which can measure electric signal under controllable temperature and applied magnetic field. The advantage of PPMS is due to the function of ever cool dewar, which can liquefy He gas and produce Liquefied He (LHe). Hence the consumption of LHe is saved and the storage of the LHe is maintained.



 
                                         
 
               
                                         
 
               
                                         

SQUID VSM為一量測磁性性質儀器,可用於量測變磁場及變溫環境下的樣品磁性。量測變因及數據擷取皆由電腦自動化控制。超靈敏的磁性量測由超導汲取線圈及超導量子干涉裝置達成。此外,為了加強量測的速度及靈敏度,使用了震動樣品的量測方式。

SQUID VSM採用的超導電磁線圈,可將樣品的外加磁場加到7個特斯拉。而超導線圈及超導量子干涉裝置皆利用液態氦降溫。液態氦也搭配加熱線圈,對樣品量測進行溫控,可控制範圍為1.8-400K。為了節省液態氦,液態氮夾層用來降低液態氦與外界的熱交換。

The SQUID VSM is an analytical instrument configured to study the magnetic properties of small experimental samples over a broad range of temperatures and magnetic fields. Automated control and data collection are provided by a computer and various electronic controllers. Extremely sensitive magnetic measurements are performed with superconducting pickup coils and a Superconducting Quantum Interference Device (SQUID). To optimize speed and sensitivity, the SQUID VSM utilizes some analytic techniques employed by Vibrating Sample Magnetometers (VSMs). Specifically, the sample is vibrated at a known frequency and phase-sensitive detection is employed for rapid data collection and spurious signal rejection. Unlike traditional (non-superconducting) VSMs, the size of the signal produced by a sample is not dependent on the frequency of vibration, but only on the magnetic moment of the sample, the vibration amplitude, and the design of the SQUID detection circuit.

The SQUID VSM utilizes a superconducting magnet (a solenoid of superconducting wire) to subject samples to magnetic fields up to 7 Tesla (70 kOe). The SQUID and magnet must both be cooled with liquid helium. Liquid helium is also used to cool the sample chamber, providing temperature control of samples from 400 down to 1.8 Kelvin. To help conserve liquid helium, the system is designed to use less costly liquid nitrogen to intercept heat bound for the helium tank. The SQUID VSM will only operate properly with both cryogens in use: liquid helium and liquid nitrogen.

 

 

(III) 新穎材料核心設施氧化物磊晶實驗室

實驗室位於清華大學物理館206室

 

206室