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NTHU

It would be very easy to make an analysis of any complicated chemical 
substance; all one would have to do would be to look at it and see 
where the atoms are. 

The only trouble is that the electron microscope is one hundred times 
too poor. 

Better electron microscopes

-Richard F. Feynman
-12.29.1959 American Physics Society, CIT

Develop new tool to discover new science !
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(b) Development of “phase (plate)/ wet cell  TEM”

(c) Migration from nano-science toward nano-
technology: Smart Window for Energy Saving

and e-paper

My talk will cover

(a) Toward atomic resolution tomography ( Dirk 
Van Dyck and Christian Kisielowski)
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(a) Toward atomic resolution tomography
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NTHU

Reverse Multislice Method
From Exit wave to Structure
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Potential Map
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 χ2 map vs iterations and number of slices for input EW

Slices

Analysis of EW Atomic Column by column

χ2
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NTHU

Segregation of Cu in Σ5 Grain Boundary in Al

Exit wave (phase)
Exit wave (modulus)

∆f

Aberration Correction

Potential Map

Fu-Rong Chen1, Christian Kisielowski, Joerg R. Jinschek
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NTHU
Vo, Cu=23.5eV,  Vo, Al=17eV

Vo(x,y)

Vo(x,y)=XAl(x,y)Vo,Al+XCu(x,y)Vo,Cu 

� 

XCu(x,y) = Vo(x,y) −Vo,Al
Vo,Cu - Vo,Al

� 

XAl (x,y) = Vo,Cu - Vo(x,y)
Vo,Cu - Vo,Al

xcu

EXP Retrived

1%         0.8%

XAl(x,y)*t(x,y) XCu(x,y)*t(x,y)

Vo=xAlVo,Al +xcu Vo, Cu

xcu

EXP Retrived

1%         0.8%

Fu-Rong Chen, Christian Kisielowski, Joerg R. Jinschek
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NTHU

Bonding Energy of Al Grain Boundary to Cu Solute 

XCu
b=

Xcuexp(Q/kT)

(1-Xcu)+Xcuexp(Q/kT)

Xcu
b : the concentration of Cu at grain boundary

Xcu    : the concentration of Cu in matrix
Q : the bonding energy of grain boundary to solute atom Cu
T: temperature

Calculated Q =0.02eV/atom
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Conclusions

• Focal plate: determination of the geometry of exit 
surface of sample 

• Correction of dynamic scattering is an important 
issue for quantification of the structure (Reverse 
multislice or 1s state model)

• For sample containing single element, it is possible 
to reconstruct 3-d structure with focal series 
images... Au wedge case

• We are working on the REWs from experimental cases

Friday, January 8, 
2010



• (b) Development of “phase (plate)/ wet cell  
TEM”
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Objective Lens

Motivation
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NTHU

Objective Lens

Motivation

Wet cell: 
bio-sample in liquid environment
Enhance Phase Contrast

piezo-driven holder

SiN

SiN
Au

Au

Au
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NTHU

Phase plate-4050 nm

-120 nm

Radostin Danev, Kuniaki Nagayama 
Ultramicroscopy  88(2001) 243-212

Zernike Phase Plate
Nobel Prize  (1953)
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NTHU

Objective Lens

Motivation

Boersch Phase Plate: 
Tunable Phase Contrast

0.6µ

Wave
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NTHU
SiO2/SiON SiO2/SiON

phase shift 0π phase shift π/2

Δf=0, in focus

1. Journal of Electron Microscopy 55: 273-280 (2006)

Rose contrast ~4

I2

I1

I1-I2
Rose Contrast

I1-I2
= x

(σ12+σ22)1/2

(σ12+σ22)1/2

Phase image of gate oxide
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Phase Image of Ferritin Δf=0, in focus

Δf=-1240nm
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phase plate (out)
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phase plate (out) phase shift 0π
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phase shift 0π phase shift π/2

phase plate (out) phase shift 0π phase shift π/2

Phase Image of Ferritin Δf=0, in focus

Δf=-1240nm
Rose contrast ~1.5

I1
I1

I2
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Proposed Phase Tomography in TEM

Ferritin~12 nm

Carbon film~12 nm

tilt series of phase  contrast image

Phase Tomography

1) High phase efficiency
2) low “absorption” contrast
3) good stability and long life

different phase series 
image
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Phase Problems
Conclusions

• Diffractive Imaging (recover the phase in diffraction 
plane)

• Recover the phase in the real space (TIE)

• Aberration Correction/ Exit Wave Reconstruction

• Focal plate: determination of the geometry of exit 
surface of sample

• Phase Plate: Alternating the phase to improve the 
contrast for biological sample
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(b) New design of Phase plate and integration with the 
electron optics of  TEM is being carried out to improve 
the phase efficiency and reducing the absorption effect   

Conclusion

(a) Stable Boesch Phase Plate (Einzel lens) under electron 
beam (no damage and no charge)

(c) Alignment of optical axes of Phase Plate and Objective 
lens
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Au particle in water Au particles in Glycerol

sealing of wet cell
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