
THEORETICAL  SURVEY 



Theories of Superconductivity 

--1959, Gorkov derives a macroscopic form of BCS theory near Tc , 

and the order parameter is proportional to the gap function ∆g 

 

Josephson effect: 

- as the first case of theory leading experiment in SC !! 

 --Microscopic theory, 1957 

1. 

2. 

3. 

In 1950, a psuedo wave function   for the SC state,  ns = | |2 

Phenomenological equations: the London equations and  

the Landau-Ginzburg equations  

Quantum theory of superconductivity was given by Bardeen,  

Cooper, and Schrieffer (BCS). 

Subsequent work of Josephson and Anderson discovered the  

importance of the phase of the superconducting wave function. 



(1) Thermodynamics of the Superconducting Transition 

1.   The transition between the normal and superconducting state is thermo-

dynamically reversible.  

2.  The critical field Hc is a quantitative measure of the free energy difference 

between the superconducting and normal states at constant temperature.   

3.  The stabilization free energy of the superconducting state with respect 

to the normal state can be determined by calorimetric, or magnetic 

measurements.     

a. In the calorimetric method:  From the difference of the heat capacities we  

can compute the free energy difference, which is the stabilization free energy 

of the superconducting state.  

b.  In the magnetic method:  The stabilization free energy is found from the 

value of the applied magnetic field, that will destroy the superconducting 

state at constant temperature.    

Hc :  

  

Thermodynamic critical field 



Ba 

B= Ba + 4M = 0,  inside SC 
 

M = - Ba/4M 

Ba = Hc 

Consider the work done (Fig. 11) on a superconductor, when it is brought reversibly at 

constant temperature from a position at infinity (where the applied field is zero)  to a 

position r in the field of a permanent magnet:  



M= (-1/4)Ba 

The thermodynamic identity for the process is 

                dF = -M‧dBa ,                                                            (4) 

For a superconductor with M related to Ba by (1)   

                dFS = 
𝟏

𝟒π
  Ba   dBa   ;                                                       (5) 

The increase in the free energy density of the superconductor is 

               FS (Ba) - FS (0) =  Ba
2

 / 8π   ;                                          (6) 

Now consider a normal nonmagnetic metal.  Then M = 0 the energy of the 

normal metal is independent of field.  At the critical field we have 

               FN (Bac) = FN (0)  .                                                           (7) 

At the critical value Bac of the applied magnetic field the energies are equal in 

the normal and superconducting states: 

               FN (Bac) = FS (Bac) = FS (0) + Ba
2

 / 8π .                           (8) 



N S 

At a finite temperature the normal and superconducting phases are in equilibrium, 

when the magnetic field is such that their free energies  F = U - TS  are equal.  

                ΔF ≡ FN (0) - FS (0) = Bac
2

 / 8π ,                                           (9) 

Where ΔF is the stabilization free energy density of the superconducting state. 



Free energy vs T for Aluminum 

dFN/dT = dFS/dT at TC 

 FN =  FS   at TC 

Zero latent heat 

So that the phase transition is second order. 

(There is no latent heat of transition at T c ). 



(2) London Equation 

   London Equation 

 j =  -  
𝐶

4𝜋𝜆𝐿
2  A     ; 

Since B = curl A 

curl j = - 
𝐶

4𝜋𝜆𝐿
2  B     ;  

curl B = (4/c) j                 from Maxwell Equation 

 

curl curl B = - 2 B = (4/c) curl j  

 

2B = B/L
2 

 

B(x) = B(0) exp (- x / λL) , 

Electrical conduction in the normal state of a metal is described by  

Ohm’s law.            J =   E 

We postulate that in the superconducting state the current density is directly  

proportional to the vector potential A of the local magnetic field B,                         

London Equation 



London Penetration Depth 

Type I SC 

Type II SC 

See slide #25 

An applied magnetic field Ba will penetrate into a thin film fairly uniformly,  

if the thickness is much less than  L; thus in a thin film the Meissner effect  

is not complete.  In a thin film, the induced field is much less than Ba. 

B(x) = B(0) exp (- x / λL) , 

λL = (mc2/4πnq2)1/2    ; 



(3) Coherence Length 

1. Coherence length is a measure of the distance within which the SC electron 

concentration cannot change drastically in a spatially varying magnetic field. 

2. The coherence length is a measure of the range over which we should 

average  A to obtain j.    

3. It is also a measure of the minimum spatial extent of a transition layer 

between normal and SC. 

FIGURE 1-4     

Interface between superconducting and normal domains in the intermediate state. 



k << 1 

Type I 

k >> 1 

Type II 

Ginsburg Landau  

Parameters 

Tinkham, eq. (4-27) 



From the BCS theory,  

for a pure SC, the exact form 

∆x/vF  Eg ~ ħ 

o /vF   Eg ~ ħ 

o ~ ħ vF /Eg  

∆t  ∆E ~ ħ 
Another derivation 

Eg 

Any spatial variation in the state of an electronic system requires extra kinetic energy. 

It is reasonable to restrict the spatial variation of j (r) in such a way that the extra energy 

is less than the stabilization energy of the SC state. 

Whereas  *  is modulated with the wavevector q 

We define an intrinsic coherence length o related to the critical modulation 

by o = 1/qo  at k = kF .  

The increase of the energy required to modulate is ħ2kq/2m.   

If this increase exceeds the energy gap Eg , superconductivity will destroy.  



at very small mean free path l  
in impure SC 

dirty                         clean 

Type II Type I 

In impure materials and in alloys the coherence length  is shorted than o. 

The coherence length and the actual penetration depth  depends on the mean  

free path l of the electrons measured in the normal state; the relationships  

are indicted in Fig. 14. When the superconductor is very impure, with a very small l. 

 then   ≈ (o ℓ)1/2  

           𝜆 ≈ 𝜆𝐿 (o / ℓ)1/2  

 so that 𝜆/ ≈ 𝜆𝐿 /ℓ  .  

 

  The ratio  𝜆/  is denoted by κ . 

 This is the “dirty superconductor” limit.  



(4)  BCS Theory of Superconductivity 

1.  The Cooper Pair :  

                                     Postulated by Cooper in 1956  

 A weak attraction can bind pairs of electrons into a bound state  

 The Fermi sea of electrons is unstable against the formation at least one  

      bound pair, regardless how weak the interaction is, so long it is attractive.  

 The lowest energy state to have the total zero momentum, so that two electrons  

      must have equal and opposite momenta.  

 Introduce  V kk =  -V  for all k out to a cut-off energy ħWc away from Ef ,  

      and Vkk  = 0 for  k  beyond  ħWc. 

                   E ~  2EF – 2 ħWc e -2/N(0)V                ∆ =  2EF  - E = 2 ħWc e -2/N(0)V  > 0 

 The contribution to the energy of the attractive potential outweights the excess 

      kinetic energy, leading to a binding energy regardless how small  V  is.  

The “BCS wave function” is composed of particle pairs k and –k, when treated by 

the BCS theory, gives the familiar electronic superconductivity observed in metals, and 

exhibits the energy gaps of Table 3.  This pairing is known as s-wave pairing ( l = 0 ) . 



e.g.   the mattress theory e- e- Phonon 

Origin of the Attractive Interaction: 

 In 1950 Frohlich first suggested the electron phonon interaction: 

      The physical idea is that the first electron polarizes the medium by attractive 

positive ions; these excessive positive ions, in turn, attract the second 

electron, giving an effective attractive interaction between the electrons.   

 If this attractive interaction is strong enough to override the repulsive 

screened Coulomb interaction, it gives rise to a net attractive interaction, and 

the superconductivity results.  

 The cut-off frequency ħWc of the Cooper pair’s attraction is expected to be of 

the order of the Debye frequency, ħWD , as a measure of the stiffness of the 

lattice. 

2. The electron-lattice-electron interaction leads to an energy gap of the 

observed magnitude. The indirect interaction proceeds when one electron 

interacts with the lattice and deforms it; a second electron sees the deformed 

lattice and adjust itself to take advantage of the deformation to lower its energy. 

Thus the second electron interacts with the first electron via the lattice 

deformation. 



penetration depth (λ) ;   coherence length (ξ)  

For dirty metal (a poor conductor)  →   ρ(300)↑,  U↑,  Tc↑ (a good SC) 

Evidence of pairing of electrons 

2∆ /kBTc  = 3.52 

3.   The penetration depth and the coherence length emerge as natural 

consequence of the BCS theory.  The London equation is obtained for  

magnetic fields that vary slowly in space.  Thus, the central phenomenon in 

superconductivity, the Meissner effect, is obtained in a natural way.  

4.  The electron density of orbitals  D(EF) of one spin at the Fermi level, and  

the electron –lattice interaction U .  For UD(EF) << 1, the BCS theory predicts:  

Where   is the Debye temperature and U is an attractive interaction  

(electron-phonon interaction). 

5.  Magnetic flux through a superconducting ring is quantized and the effective  

unit of charge is 2e  rather than e.   



(5)  BCS  Ground  State 

Non interacting Fermi gas BCS ground state 

Some what like the 

Fermi Dirac distribution 

at T = Tc 

(a)                                                                      (b) 

S wave pairing 

1. The BCS theory shows that, with an appropriate attractive interaction between 

electrons, the new ground state is superconducting, and is separated by a finite 

energy Eg from its lowest excited state. 

2. With the attractive potential energy of the BCS state, the total energy of the BCS 

state will be lower with respect to the Fermi state. 

3. The central feature of the BCS state is that one–particle orbitals are occupied in 

pairs: if an orbital with the wavevector k and spin up is occupied, then the 

orbital with the wavevector –k and spin down is also occupied. 

4. Cooper pairs: they have spin zero, and have many attributes of bosons.  

T = 0 



the BCS Ground state wave function 

Singlet wave function, a vacuum state with no particles present 

where  uk
2 + vk

2 = 1,  and  uk  =  e 
iϕ vk 

where |F = Fermi sea filled up to kF 

Using a Hartree self consistent field, or a mean field theory 

Creation operator  Ck* 

Annihilation operator  Ck 

Pairing Hamiltonian 

The gap equation  

Tinkham, 

Chapter 2 

Ek = (∆k
2 + k

2)1/2 



in weak coupling limit 

The BCS  

occupation  

number 



k Tc= 1.14 ħWc e -2/N(0)V 

∆(0)/kTc = 2/1.14 = 1.76,   weak coupling 

∆(T) /∆(0)   (1-T/Tc)
1/2   at  T ~  Tc 

 tanh (bEk/2) 

         Ek      V 

1 1 
= 

2 
 
  k 

Determines the temperature dependence of  ∆(T) 

In the mean field theory,   

∆k  is the order parameter ! 

If  ∆(0)/kTc  is > than 2, it is strong electron-phonon coupling. 

(2-50) 





Low temperature Superconductors 

 

-- Mediated by Electron phonon coupling  

   :  electron phonon coupling constant 

 * :  Coulomb repulsion of electrons 

 

    N(0) < I2 >/ 2 

 --  McMillian formula for Tc 

Are electrons or phonons more important? 



Broadened by kTc 

vk
2 

ħWD  



4. The arguments that follow apply to a boson gas with a large number of bosons in 

     the same orbital. 

5. We then can treat the boson probability amplitude as a classical quantity, just as 

    the electromagnetic field is used for photons. Both amplitude and phase are then  

    meaningful and observable. 

when n is large 

Flux Quantization in a Superconducting Ring 

    We prove that the total magnetic flux that passes through a superconducting  

ring may assume only quantized values, integral multiples of the flux quantum 

2𝝅ℏ𝒄/𝒒 , where by experiment 𝒒 = 𝟐𝒆 , the charge of an electron pair. 

1. Let us first consider the electromagnetic field as an example of a similar boson field. 

2. The electric field intensity 𝐸 𝑟  acts qualitatively as a probability field amplitude. 

3. Then we may write the electric field in a semi-classical approximation as 

         𝐸 𝑟 ≅   (4𝜋ℏ𝜔)1/2 𝑛(𝑟)1/2 𝑒−𝑖𝜃(𝑟)        𝐸∗ 𝑟 ≅   (4𝜋ℏ𝜔)1/2 𝑛(𝑟)1/2 𝑒−𝑖𝜃(𝑟)   

         , where 𝜃 𝑟  is the phase of the field. 

𝑬∗ 𝒓 𝑬(𝒓)/𝟒𝝅 ≅ 𝒏(𝒓)ℏ𝝎 



,  and from eq. (19) 

(1) 

London penetration depth   L = (mC2/4nq2)1/2 



(23)’ 

from the Meissner effect 

(2) 

From Eq. 20, 21 



S is an integer 

S is an integer 



(27) 

(28) 

S is an integer Φ = Φo s 

Φ = Φext + Φsc     The total flux Φ is quantized.  



(29’) 

(3) 



Type II Superconductors 

1. A good type I superconductor excludes a magnetic field until superconductivity 

    is destroyed suddenly, and then the field penetrates completely. 

2. (a) A good type II superconductor excludes the field completely up to a field 𝐻𝑐1 . 

    (b) Above 𝐻𝑐1 the field is partially excluded, but the specimen remains electrically 

          super conducting. 

    (c) At a much higher field, 𝐻𝑐2 , the flux penetrates completely and 

          superconductivity vanishes. 

    (d) An outer surface layer of the specimen may remain superconducting up to  

          a still higher field 𝐻𝑐3 . 

3. An important difference in a type I and a type II superconductor is in 

    the mean free path of the conduction electrons in the normal state. 

    are type I, with 𝒌 < 𝟏 

    is the situation when 𝒌 = 𝝀/𝝃 > 𝟏,  will be type II. 



for  Hc1 < H < Hc2 

for H < Hc 

1.  A superconductor is type I if the surface energy is always 

     positive as the magnetic field is increased, 

2.  and type II if the surface energy becomes negative 

     as the magnetic field is increased. 

    The free energy of a bulk superconductor is increased when the magnetic field is  

expelled. However, a parallel field can penetrate a very thin film nearly uniformly 

 (Fig.17), only a part of the flux is expelled, and the energy of the superconducting 

 film will increase only slowly as the external magnetic field is increased. 



k << 1 

Type I 

k >> 1 

Type II 

Ginsburg Landau  

Parameter 



In such a mixed state, called the vortex state, the external magnetic field will  

penetrate the thin normal regions uniformly, and the field will also penetrate 

somewhat into the surrounding superconducting material 

Vortex State 



Flux lattice  

at 0.2K of NbSe2 

Abrikosov triangular  

Lattice, as imaged by  

LT-STM, H. Hess et al 

. The term vortex state describes the circulation of superconducting 

currents in vortices throughout the bulk specimen. 

The vortex is stable when the penetration of the applied field into the superconducting 

material causes the surface energy become negative. A type II superconductor is 

characterized by a vortex state stable over a certain range of magnetic field strength; 

namely, between 𝐻𝑐1 and 𝐻𝑐2 . 









Normal Core 

of Vortex 



This is the field for nucleation of a single fluxoid. 

(31) 

(30) 

The external field penetrates the specimen almost uniformly, 

with small ripples on the scale of the fluxoid lattice. 

Each (last) core is responsible for carrying a flux of the order of 𝜋𝜉2𝐻𝑐2 , 

The larger the ratio 𝜆/𝜉 , the larger is the ratio of  𝐻𝑐2 to 𝐻𝑐1. 

    The field will extend out from the normal core a distance 𝝀 into the  

superconducting environment. The flux thus associated with a single (first) core is 

𝜋𝜆2𝐻𝑐1 , and this must be equal to the flux quantum Φ0. 

    The estimate 𝐻𝑐1 in terms of  𝐻𝑐  , we consider the stability of the vortex state at  

absolute zero in the impure limit 𝜉 < 𝜆 ; here 𝜅 > 1 are the coherence length is short in 

comparison with the penetration depth. 

    We estimate in the vortex state the stabilization energy of a fluxoid core viewed as 

a normal metal cylinder which carries an average magnetic field 𝐵𝑎.  The radius is of  

the order of the coherence length, the thickness of the boundary between N and S 

phases. 

𝑯𝒄𝟐   ≈  𝜱𝟎/𝝅𝝃𝟐 

𝑯𝒄𝟏   ≈  𝜱𝟎/𝝅𝝀𝟐 

Estimation of 𝑯𝒄𝟏 and 𝑯𝒄𝟐 



for H < Hc1 ,  f > 0 ;   for  H > Hc1 ,  f < 0    

The threshold field divides the region of positive surface energy from the  

region of negative surface energy. 

~ 1/ k 

(30) + (35) 

(30) + (31) 

(31) + (37a)  

But there is also a decrease in magnetic energy because of the penetration 

of  the applied field 𝐵𝑎 into the superconducting material around 

The threshold field for a stable fluxoid is at 𝑓 = 0, or, with 𝐻𝑐1 written for  𝐵𝑎, 

𝜋𝜉𝜆𝐻𝑐  ≈ Φ0   

(𝐻𝑐1𝐻𝑐2)1/2 ≈ 𝐻𝑐   

𝐻𝑐2 ≈ (𝜆/𝜉)𝐻𝑐  = 𝜅𝐻𝑐   

(36) 

(37a) 

(37b) 


