THEORETICAL SURVEY



Theorles of Superconductivity

1. Phenomenological equations: the London equations and
the Landau-Ginzburg equations

In 1950, a psuedo wave function w for the SC state, n, = |y |

2. Quantum theory of superconductivity was given by Bardeen,
Cooper, and Schrieffer (BCS).

--Microscopic theory, 1957

--1959, Gorkov derives a macroscopic form of BCS theory near T,
and the order parameter is proportional to the gap function A,

3. Subsequent work of Josephson and Anderson discovered the
Importance of the phase of the superconducting wave function.

Josephson effect:
- as the first case of theory leading experiment in SC !!



(1) Thermodynamics of the Superconducting Transition

1. The transition between the normal and superconducting state is thermo-
dynamically reversible.

2. The critical field H, is a quantitative measure of the free energy difference
between the superconducting and normal states at constant temperature.

3. The stabilization free energy of the superconducting state with respect

to the normal state can be determined by calorimetric, or magnetic
measurements.

a. Inthe calorimetric method: From the difference of the heat capacities we

can compute the free energy difference, which is the stabilization free energy
of the superconducting state.

b. In the magnetic method: The stabilization free energy is found from the

value of the applied magnetic field, that will destroy the superconducting
State at constant temperature.

H, : Thermodynamic critical field



Consider the work done (Fig. 11) on a superconductor, when it is brought reversibly at
constant temperature from a position at infinity (where the applied field is zero) to a
position r in the field of a permanent magnet:

* B,
W = I M - dB, , S
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Figure 11 (a) A superconductor in which the Meissner effect is complete has B = 0, as if the
magnetization were M = —B,/4m, in CGS units. (b) When the applied field reaches the value B,,,
the normal state can coexist in equilibrium with the superconducting state. In coexistence the free
energy densities are equal: Fy(T, B,.) = Fs(T, B,.).



The thermodynamic identity for the process is
dF=-M - dB,, (4)
For a superconductor with M related to B, by (1) M= (-1/4m)B,
1
dFg = - Ba dB, ; (5)

The increase in the free energy density of the superconductor is

Fs (By) - Fs(0) = B2/ 8n |; (6)

Now consider a normal nonmagnetic metal. Then M = 0 the energy of the
normal metal is independent of field. At the critical field we have

Fn (Bae) = Fy (0) (7)

At the critical value B, of the applied magnetic field the energies are equal in
the normal and superconducting states:

Fy (Bae) = Fs (By) = Fs (0) + B/ 8x. (8)



AF=F, (0) - Fs (0) =B, 2/ 8x, 9)

Where AF is the stabilization free energy density of the superconducting state.

At a finite temperature the normal and superconducting phases are in equilibrium,
when the magnetic field is such that their free energies F=U - TS are equal.
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Figure 12 The free energy density Fy of a nonmagnetic normal metal is approximately indepen-
dent of the intensity of the applied magnetic field B,. At a temperature T < T, the metal is a
superconductor in zero magnetic field, so that Fs(T, 0) is lower than Fy(T, 0). An applied magnetic
field increases F, by B;/87, in CGS units, so that F(T, B,) = Fs(T, 0) + B2/8. If B, is larger than
the critical field B, the free energy density is lower in the normal state than in the superconducting
state, and now the normal state is the stable state. The origin of the vertical scale in the drawing is
at Fg(T, 0). The figure equally applies to Ug and Uy at T = 0.
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So that the phase transition is second order.
(There is no latent heat of transition at T ).

dF,/dT = dF¢/dT at T,



(2) London Equation

Electrical conduction in the normal state of a metal is described by
Ohm’s law. = ok

We postulate that in the superconducting state the current density is directly
proportional to the vector potential A of the local magnetic field B,

- C
= - A |, :
. 4T A2 London Equation
Since B = curl A
curly=-— B |
curl B = (4n/c) j from Maxwell Equation

curl curl B =- V2B = (4rn/c) curl j

V2B = B/}, 2

B(x) =B(0)exp (-x/4)),




‘ ‘ l I B(x) =B(0) exp (-x/4)),

B
] Y Sh i Figure 13 Penetration of an applied magnetic field into a semi-infinite superconductor. The pene-

tration depth A is defined as the distance in which the field decreases by the factor e . Typically,
A=500A4in a pure superconductor.

Table 5 Calculated intrinsic coherence length and
London penetration depth, at absolute zero

A
Intrinsic Pippard London
coherence penetration
length §0: ‘depth I\L,
Metal in 107 cm in 107¢ cm Alé

Sn 23 3.4 0.16

: ; 0.010
Type | SC I;L 160 1.6 1

8.3 _ 3.7 0.45
cd 76. 11.0 0.14

TypellsC™ > - -

L R S B s R i

After R. Meservey and B. B. Schwartz.

See slide #25 A, = (mc?/4rng?)¥2 ; London Penetration Depth

An applied magnetic field B, will penetrate into a thin film fairly uniformly,
If the thickness is much less than A ; thus in a thin film the Meissner effect
IS not complete. In a thin film, the induced field is much less than B,.



(3) Coherence Length

1. Coherence length is a measure of the distance within which the SC electron
concentration cannot change drastically in a spatially varying magnetic field.

2. The coherence length is a measure of the range over which we should
average A to obtain j.

3. It is also a measure of the minimum spatial extent of a transition layer
between normal and SC.
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FIGURE 1-4

Interface between superconducting and normal domains in the intermediate state.
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FIGURE 1-4
Interface between superconducting and normal domains in the intermediate state.
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FIGURE 4-2

Schematic diagram of variation of & and / in a domain wall. The case ¥ < 1 refers to
a type I superconductor (positive wall energy); the case x > 1 refers to a type 1I
superconductor (negative wall energy).



Any spatial variation in the state of an electronic system requires extra kKinetic energy.
It is reasonable to restrict the spatial variation of j (r) in such a way that the extra energy
IS less than the stabilization energy of the SC state.

go(x) = 2—1/2 (ei(k+q)x £ eikx)
Whereas y*y is modulated with the wavevector (

(15b)

‘ E
g
A d2) _L(ﬁ_z) T AT
fdx‘°*< om d2) © = 3 \gm/ Wk Har t Kl =2k

The increase of the energy required to modulate is #2kg/2m.

If this increase exceeds the energy gap E, superconductivity will destroy.
We define an intrinsic coherence length & related to the critical modulation
by &, = 1/q, atk =kg Another derivation

= h2kp/2mE, = hop/2E, ,
§0 Fl/4m g (%2 g AX/VF . Eg - h
From the BCS theory, . Ne «E.~h
for a pure SC, the exact form §o = 2hvp/TE, . So IV J
& ~h Ve /E,




In impure materials and in alloys the coherence length & is shorted than &,.
The coherence length and the actual penetration depth A depends on the mean

free path | of the electrons measured In

the normal state; the relationships

are indicted in Fig. 14. When the superconductor is very impure, with a very small .

then &~ (&, £)12
A=Ay (&1 )Y
sothat A/ = A, I€ .

The ratio A/ is denoted by « .

This is the “dirty superconductor” limit.

at very small mean free path ¢
In impure SC

Figure 14 Penetration depth A

and the coherence length & as 0.5 1 —= %0
functions of the mean free path € &

of the conduction electrons in the 04|

normal state. All lengths are in

units of &,, the intrinsic coher- 0.3

ence length. The curves are

sketched for & = 10A,. For short 021

mean free paths the coherence 01k ]

length becomes shorter and the : d|rty clean
penetration  depth  becomes 0 . | ; |
longer. The increase in the ratio 0 il

kA/& favors type II superconduc- Type I I & Type I

tivity.
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(4) BCS Theory of Superconductivity
1. The Cooper Pair :

The “BCS wave function” is composed of particle pairs kT and —k<, when treated by
the BCS theory, gives the familiar electronic superconductivity observed in metals, and
exhibits the energy gaps of Table 3. This pairing is known as s-wave pairing (1=0) .

Postulated by Cooper in 1956

O A weak attraction can bind pairs of electrons into a bound state

O The Fermi sea of electrons is unstable against the formation at least one
bound pair, regardless how weak the interaction is, so long it is attractive.

O The lowest energy state to have the total zero momentum, so that two electrons
must have equal and opposite momenta.

O iIntroduce V ., = -V forall k out to a cut-off energy AW, away from E; ,
and V- =0 for k beyond AW,

E~ 2E.—2 hW, e 2NOV A= 2Ep - E=2 AW, e ZNOV >0

O The contribution to the energy of the attractive potential outweights the excess
Kinetic energy, leading to a binding energy regardless how small V is.




Origin of the Attractive Interaction:

2. The electron-lattice-electron interaction leads to an energy gap of the
observed magnitude. The indirect interaction proceeds when one electron
Interacts with the lattice and deforms it; a second electron sees the deformed
lattice and adjust itself to take advantage of the deformation to lower its energy.
Thus the second electron interacts with the first electron via the lattice
deformation.

& AN e e.g. the mattress theory

O In 1950 Frohlich first suggested the electron phonon interaction:
The physical idea is that the first electron polarizes the medium by attractive
positive ions; these excessive positive ions, in turn, attract the second
electron, giving an effective attractive interaction between the electrons.

O If this attractive interaction is strong enough to override the repulsive
screened Coulomb interaction, it gives rise to a net attractive interaction, and
the superconductivity results.

O The cut-off frequency 7#\W, of the Cooper pair’s attraction is expected to be of
the order of the Debye frequency, AW, as a measure of the stiffness of the

lattice.




3. The penetration depth and the coherence length emerge as natural
consequence of the BCS theory. The London equation is obtained for
magnetic fields that vary slowly in space. Thus, the central phenomenon in
superconductivity, the Meissner effect, is obtained in a natural way.

penetration depth () ; coherence length (S)

4. The electron density of orbitals D(E) of one spin at the Fermi level, and
the electron —lattice interaction U . For UD(Eg) << 1, the BCS theory predicts:

T, = 1.140 exp|—1/UD(€g)] , 2A/ksT, =3.52

Where @ is the Debye temperature and U is an attractive interaction
(electron-phonon interaction).

For dirty metal (a poor conductor) — p(300)1, U?, T.1 (a good SC)

5. Magnetic flux through a superconducting ring is quantized and the effective
unit of charge is 2e rather than e.

Evidence of pairing of electrons



(5) BCS Ground State

1.

The BCS theory shows that, with an appropriate attractive interaction between
electrons, the new ground state is superconducting, and is separated by a finite
energy E, from its lowest excited state.

With the attractive potential energy of the BCS state, the total energy of the BCS
state will be lower with respect to the Fermi state.

The central feature of the BCS state is that one—particle orbitals are occupied in
pairs: if an orbital with the wavevector k and spin up is occupied, then the
orbital with the wavevector —k and spin down is also occupied.

Cooper pairs: they have spin zero, and have many attributes of bosons.

-~ |~E,

Some what like the
Fermi Dirac distribution

|
|
1
|
|
|
| -
| at T =T,

€r
(b) c—=

Non interacting Fermi gas BCS ground state

Figure 15 (a) Probability P that an orbital of kinetic energy € is occupied in the ground state of the
noninteracting Fermi gas; (b) the BCS ground state differs from the Fermi state in a region of width
of the order of the energy gap E,. Both curves are for absolute zero.




Singlet wave function, a vacuum state with no particles present Tinkham,
Chapter 2
|"/’O> _— Z gkaTkal ’F> (2-11)

k>kpr

Creation operator C,* where |F) = Fermi sea filled up to kg
Annihilation operator C,

Using a Hartree self consistent field, or a mean field theory

the BCS Ground state wave function
(We> = ] (e + veckic®y)) | Doy (2-14)

where u 2 +v2=1, and u, = ey,

Pairing Hamiltonian
% —_— Z Eknko. + Z VMC:T kal C—ll CIT (2"20)
ko kl

1 <A 1 A
Ay = o ¥ 2 oy = e '
=T 2g M= Tl gy

Vkl (2'30)

E,= (A2 +E2)12 The gap equation



-V if |&]| and |&]| < ho,
— 2-31
M { 0 otherwise (2-31)
A for |&| <ho,
2-32
A {0 for |& | > ho, Sas
_ how, x 2hae” NOV - (2-34)
sinh [1/N(0)V] ‘

in weak coupling limit

The BCS 1 ¢ 1 £
[ : — — ——B— = — — k -
ﬁﬁiﬁggﬁ'on Uk (1 ) 5 [1 (A% 1 fi)”z} (2-35)




k T,= 1.14 AW, e 2NOV

A(0)/KT,=2/1.14 =1.76, weak coupling
If A(0)/KT, 1s>than 2, it is strong electron-phonon coupling.

A(T) IAQ0) o (1-TIT)Y2 at T~ T,

1

1

V

2

tanh (SE,/2)
2 S (2-50)

Determines the temperature dependence of A(T)

o

P~al

\Q\p

\%LA

Ko

In the mean field theory,
Ay 1s the order parameter !



Table 3 Energy gaps in superconductors, at T = 0

Al Si
Eg(0) in 10~ %eV. 34 ‘I
E(O)/kgT. 33
Sc Ti Cr Mn Fe Co Ni Cu Zn ? Ga Ge
1 2 i
3.2 3.5
Y Zr Tc Ru Rh Pd Ag Cd In Sn w)
] l15 |15 |iis
3.2 3.6 }5\
La fcc | Hf Re Os Ir Pt Au Hg w| TI Pb
| 19, | 165 | 735 § 273
3.7 | 4.6 3.57 4.38/

A\

/




Low temperature Superconductors

-- Mediated by Electron phonon coupling

-- McMillian formula for T,

T(-:@iem B (1+ Aep)
1.45 Aep — 11*(1+0.62)p)

A . electron phonon coupling constant
u* . Coulomb repulsion of electrons

A oc N(O) < 12>/ @?

Are electrons or phonons more important?
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Plot of BCS occupation fraction v7 vs..electron energy measured from the chemical
potential (Fermi energy). To make the cufoffs at +#w, visible, the plot has been
made for a strong-coupling superconductor with N(0)V = 0.43. For comparison, the

Fermi function for the normal state at T, is|also shown on the same scale, using the
BCS relation A(0) = 1.76kT..

Broadened by KT,



Flux Quantization in a Superconducting Ring

We prove that the total magnetic flux that passes through a superconducting
ring may assume only quantized values, integral multiples of the flux quantum
2mhc/q , where by experiment g = 2e , the charge of an electron pair.

1. Let us first consider the electromagnetic field as an example of a similar boson field.

2. The electric field intensity E (r) acts qualitatively as a probability field amplitude.

E*(r)E(r)/4m = n(r)hw when n is large

3. Then we may write the electric field in a semi-classical approximation as
E(r) = (4nhw)Y? n(r)t/? =10 E*(r) = (4nhw)Y? n(r)1/? e=10M
, Where 0(r) is the phase of the field.

4. The arguments that follow apply to a boson gas with a large number of bosons in
the same orbital.

5. We then can treat the boson probability amplitude as a classical quantity, just as
the electromagnetic field is used for photons. Both amplitude and phase are then
meaningful and observable.



(1) We first show that a charged boson gas obeys the London equation. Let
(r) be the particle probability amplitude. We suppose that the pair concentra-

tion n = Y*Y = constant.

llj — n1/2 eiO(r) . ‘/j* == n1/2 e—iG(r)

>

The phase 6(r) is important
1 1
vV = —(p = iA) = —(—iﬁV—iA)
m & m c
The particle flux is given by, and from eq. (19)
q
vl = (ﬁVO - —A)

C

that the electric current density is  j = gqy*vy = (ﬁvg . 18 A)

C

nq2B/

mc

London equation: curl j = —

s
|
|

dmAT

London penetration depth A, = (mMC?/4rng?)*/?

(19)



(2)[Quantization of the magnetic flux through a ring|is a dramatic consequence
of Eq. (21). Let.us take a closed path C through the interior of the supercon-

ducting material, well away from the surface (Fig. 16). "

Flux lines

Figure 16 Path of integration C through the interior of a
superconducting ring. The flux through the ring is the sum
of the flux ®.,, from external sources and the flux ®,. from
the superconducting currents which flow in the surface of
the ring; ® = &, + ®.. The flux ® is quantized. There is
normally no quantization condition on the flux from external
sources, so that ®,. must adjust itself appropriately in order

that ® assume a quantized value.

B and j are zero in the interior. from the Meissner effect
ficVO = gA . From Eqg. 20, 21 (23)
We form

é; Vo -dl=6,— 6 (23)
C

for the change of phase on going once around the ring.



The probability amplitude ¢ is measurable in the classical approximation,
so that ¢ must be single-valued and

0o — 61=2ms ,  Sisan integer (24)
where s is an integer. By the Stokes theorem,
jg A-dl=f(curlA)-d0'=fB-d0'=(I), (25)
C c C

do is an element of area on a surface bounded by the curve C, and ® is
the magnetic flux through C.

d = (2mhclq)s . (26) S is an integer

Thus the flux through the ring is quantized in integral multiples of 27#c/q.



By experiment ¢ = —2¢ O=0,s S is an integer

d, = 27hc/2e = 2.0678 X 10~7 gauss cm = mhele

(27)
This unit of flux is called a fluxoid or fluxon.

O=0 (28)

+ @, The total flux @ is quantized.

ext

| There is normally no quantization condition on the flux from external sources,
so that ® . must adjust itself appropriately in order that ® assume a quantized
value.



(3) [Duration of Persistent Currents
A fluxoid cannot leak out of the ring and thereby reduce the persistent
current unless by a thermal fluctuation a minimum volume of the
superconducting ring is momentarily in the normal state.

The probability per unit time that a fluxoid will leak out is the product

P = (attempt frequency)(activation barrier factor) . (28)

The activation barrier factor is exp(—AF/kgT), where the free energy of the

barrier is

AF = (minimum volume)(excess free energy density of normal state) .
AF = R¢& 2H2/87 . (29)
exp(—AF/kgT) =~ exp(—10%) =~ 10~#:34x10) (29

The characteristic frequency with which the minimum volume can attempt
to change its state must be of order of E /fi. If E;, = 107'° erg, the attempt
frequency is = 107%/10727 = 10'2 s7!. The leakage probability (28) becomes

— 7T _ — 7
P = 101210 4.34%10 S ) 10 4.34x%10 S 1 .

The reciprocal of this is a measure of the time required for a fluxoid to leak
out, T = 1/P = 10434X10" g
The age of the universe is only 10'® s, so that a fluxoid will never leak out
in the age of the universe, under our assumed conditions. Accordingly, the

current is maintained.



Type Il Superconductors

1. A good type I superconductor excludes a magnetic field until superconductivity
IS destroyed suddenly, and then the field penetrates completely.
2. (a) A good type Il superconductor excludes the field completely up to a field H, .

(b) Above H,., the field is partially excluded, but the specimen remains electrically
super conducting.

(c) At a much higher field, H., , the flux penetrates completely and
superconductivity vanishes.

(d) An outer surface layer of the specimen may remain superconducting up to
a still higher field H_5 .

3. An important difference in a type | and a type Il superconductor is in
the mean free path of the conduction electrons in the normal state.

are type I, with k < 1
IS the situation when k = A/& > 1, will be type I1.



1. Asuperconductor is type | if the surface energy is always
positive as the magnetic field is increased,

2. and type Il if the surface energy becomes negative
as the magnetic field is increased. for H,<H<H,

The free energy of a bulk superconductor is increased when the magnetic field is
expelled. However, a parallel field can penetrate a very thin film nearly uniformly
(Fig.17), only a part of the flux is expelled, and the energy of the superconducting
film will increase only slowly as the external magnetic field is increased.

forH < H,

Normal

(a) (b)

Figure 17 (a) Magnetic field penetration into a thin film of thickness equal to the penetration
depth A. The arrows indicate the intensity of the magnetic field. (b) Magnetic field penetration in
a homogeneous bulk structure in the mixed or vortex state, with alternate layers in normal and
superconducting states. The superconducting layers are thin in comparison with A. The laminar
structure is shown for convenience; the actual structure consists of rods of the normal state sur-
rounded by the superconducting state. (The N regions in the vortex state are not exactly normal,
but are described by low values of the stabilization energy density.)
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FIGURE 1-4
Interface between superconducting and normal domains in the intermediate state.
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Schematic diagram of variation of & and / in a domain wall. The case ¥ < 1 refers to
a type I superconductor (positive wall energy); the case x > 1 refers to a type 1I
superconductor (negative wall energy).



Vortex State

In such a mixed state, called the vortex state, the external magnetic field will
penetrate the thin normal regions uniformly, and the field will also penetrate
somewhat into the surrounding superconducting material

Type II superconductor
Type I superconductor E<A

>

B, + By,

X

0

Figure 18 Variation of the magnetic field'and energy
gap parameter A(x) at the interface of superconduct-
ing and normal regions, for type I and type II super-
conductors. The energy gap parameter is a measure
of the stabilization energy density of the supercon-
ducting state.



. The term vortex state describes the circulation of superconducting
currents in vortices throughout the bulk specimen.

-

Flux lattice . | e Abrikosov triangular

at 02K of NbSe Lattice, as imaged by
; LT-STM, H. Hess et al

Figure 19 Flux lattice in NbSe, at 1,000 gauss at 0.2K, as viewed with a scanning tunneling
microscope. The photo shows the density of states at the Fermi level, as in Figure 23. The vortex
cores have a high density of states and are shaded white; the superconducting regions are dark, with
no states at the Fermi level. The amplitude and spatial extent of these states is determined by a
potential well formed by A(x) as in Figure 18 for a Type II superconductor. The potential well
confines the core state wavefunctions in the image here. The star shape is a finer feature, a result
special to NbSe, of the sixfold disturbance of the charge density at the Fermi surface. Photo
courtesy of H. F. Hess, AT&T Bell Laboratories.

The vortex Is stable when the penetration of the applied field into the superconducting
material causes the surface energy become negative. A type Il superconductor is
characterized by a vortex state stable over a certain range of magnetic field strength;
namely, between H.; and H, .
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Observation of Hexagonally Correlated Flux Quanta In YBa;Cu;07

P. L. Gammel, D. J. Bishop, G. J. Dolan,
L. F. Schneemeyer, and J.

. A. Murray,
A aszeZak

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 26 August 1987)

The high-resolution Bitter pattern technique has been used to reveal the magnetic structure of single-
crystal samples of high-T. superconductor YBa>Cu3O7 at 4.2 K. Typical patterns consist of hexagonally
correlated, singly quantized vortices of flux hc/2e. That is, the structures are comparable to those that
would be observed in conventional type-1I superconductors under similar conditions.
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FIG. 1. Sketch of the decoration apparatus.




FIG. 2. Flux spots in a YBa;Cu30O7 sample decorated after
cooling in a field of 13 G.



B ]Pm

FIG. 3. (a) Typical area of a sample cooled in a 52-G field. (b) Central portion of the autocorrelation function of the pattern in

(a).



Normal Core "
(r)
of Vortex v

e
FIGURE 5-1

Structure of an irsolatcd Abrikosov vortex in a material with k ~ 8. The maximum
value of h(r) is approximately 2 H,_,.




Estimation of H.; and H,

The field will extend out from the normal core a distance A into the
superconducting environment. The flux thus associated with a single (first) core is
wA*H_, , and this must be equal to the flux quantum ®,,.

H, =~ ®¢/mA? (30)
This is the field for nucleation of a single fluxoid.

The external field penetrates the specimen almost uniformly,
with small ripples on the scale of the fluxoid lattice.
Each (last) core is responsible for carrying a flux of the order of mé?H,, ,

H,, =~ @,/mé§? (31)
The larger the ratio A/¢ , the larger is the ratio of H., to H,,.

The estimate H., interms of H,., we consider the stability of the vortex state at

absolute zero in the impure limit £ < A4 ; here k > 1 are the coherence length is short in
comparison with the penetration depth.

We estimate in the vortex state the stabilization energy of a fluxoid core viewed as
a normal metal cylinder which carries an average magnetic field B,. The radius is of

the order of the coherence length, the thickness of the boundary between N and S
phases.



]
Feore = EH?‘ X wé? | (32)

But there is also a decrease in magnetic energy because of the penetration
of the applied field B, into the superconducting material around

1
Joag ™ —E;Bi X @A® . (33)
= Jeore & Finsg = #(HEF~ BN (34)

The threshold field for a stable fluxoid is at f = 0, or, with H.; written for B,,

H./H,. = ¢r . ~1lx (35)

The threshold field divides the region of positive surface energy from the
region of negative surface energy.

forH<H_,, f>0; for H>H_,, <0
(30)+(35) | MSAH. = Dy (36)
(30) + (31) (Hcchz)l/z ~ H_ (37a)
B)+@7a) | H., =~ (1/§)H, = kH, (37b)




