SIMPLE CRYSTAL STRUCTURES

Sodium Chloride Structure

The sodium chloride, NaCl, structure is shown in Figs. 17 and 18. The
lattice is face-centered cubic; the basis consists of one Na atom and one Cl atom
separated by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions
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Figure 17 We may construct the sodium chloride crys-
tal structure by arranging Na™ and Cl~ ions alternately
at the lattice points of a simple cubic lattice. In the crys-
tal each ion is surrounded by six nearest neighbors of the
opposite charge. The space lattice is fce, and the basis
has one Cl™ ion at 000 and one Na™ ion at $33. The figure
shows one conventional cubic cell. The ionic diameters
here are reduced in relation to the cell in order to clarify
the spatial arrangement.

Each atom has as nearest neighbors(six atoms of the opposite kind. Representa-
tive crystals having the NaCl arrangé{ent include those in the following table.
The cube edge a is given in angstroms; 1 A = 1078 cm = 107 m = 0.1 nm.




Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 20. There is one molecule
per primitive cell, with atoms at the corners 000 and body-centered positions
313 of the simple cubic space lattice. Each atom may be viewed as at the center
of a cube of atoms of the opposite kind, so that the number of nearest neighbors
or coordination number is
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Figure 20 The cesium chloride crystal struc-
ture. The space lattice is simple cubic, and the
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basis has one Cs™ ion at 000 and one Cl~ ion at
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Hexagonal Close-packed Structure (hcp)

There are an infinite number of ways of arranging identical spheres in a
regular array that maximizes the packing fraction (Fig. 21). One is the face-

centered cubic structure; another is the hexagonal close-packed structure
(Fig. 22). The fraction of the total volume occupied by the spheres is 0.74 for

both structures.

hcp: ABABAB
fcc: ABCABC

Figure 21 A close-packed layer of spheres is shown, with centers at points marked A. A second and
identical layer of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third layer. It can go
in over A or over C. If it goes in over A the sequence is ABABAB. . . and the structure is hexagonal

close-packed. If the third layer goes in over C the sequence is ABCABCABC. . . and the structure
is face-centered cubic.




The hep structure has the primitive cell ’ '

basis of two atoms (Fig. 23).

Figure 22 The hexagonal close-packed struc-
ture. The atom positions in this structure do
not constitute a space lattice. The space lattice
is simple hexagonal with a basis of two identi-
cal atoms associated with each lattice point.
The lattice parameters a and ¢ are indicated,
where a is in the basal plane and c is the mag-
nitude of the axis a; of Fig. 14.

The ratio c¢/a (or as/a,) for hexagonal closest-packing of spheres has the
value (§)2 = 1.633.

Figure 23 The primitive cell has a;, = a,,
with an included angle of 120°. The ¢ axis (or
a3) is normal to the plane of a; and a,. The
ideal hep structure has ¢ = 1.633 a. The two
atoms of one basis are shown as solid circles.
One atom of the basis is at the origin; the
other atom is at 44, which means at the posi-
tion r = %a; + 3a, + 1a,.

The number of nearest-neighbor atoms is 12 for both hep and fee structures.



Diamond Structure

The space lattice of diamond is fcc. The primitive basis has two identical

atoms at 000; 1% associated with each point of the fcc lattice, as in Fig. 24. Thus
the conventional unit cube containatoms. There is no way to choose the
primitive cell such that the basis of diamond contains only one atom.

The tetrahedral bonding characteristic of the diamond structure is shown
in Fig. 25. Each atom has 4 nearest neighbors and 12 next nearest neighbors.
The diamond structure is relatively empty: the maximum proportion of the
available volume which may be filled by hard spheres is only 0.34.

Figure 24 Atomic positions in the cubic cell of the diamond
structure projected on a cube face; fractions denote height
above the base in units of a cube edge. The points at 0 and %
are on the fcc lattice; those at  and § are on a similar lattice
displaced along the body diagonal by one-fourth of its length.
With a fcc space lattice, the basis consists of two identical
atoms at 000; 143.




Figure 25 Crystal structure of diamond,
showing the tetrahedral bond arrange-
ment.

diamond structure is an example of the directional covalent bonding found in
column IV of the periodic table of elements.

Carbon, silicon, germanium, and tin can crystallize in the diamond struc-
ture, with lattice constants a = 3.56, 5.43, 5.65, and 6.46 A.



Cubic Zinc Sulfide Structure

The diamond structure may be viewed as two fcc structures displaced from
each other by one-quarter of a body diagonal. The cubic zinc sulfide (zinc

blende) structure results when Zn atoms are placed on one fcc lattice and S

atoms on the other fcc lattice, as in Fig. 26. The conventional cell is a cube. The
coordinates of the Zn atoms are 000; 03%; £03; 3310; the coordinates of the S
atoms are 111; 133; 313, 331 . The lattice is fcc. There are four molecules of ZnS
per conventional cell. About each atom there are four equally distant atoms of
the opposite kind arranged at the corners of a regular tetrahedron.

The cubic ZnS structure does not have inversion symmetry.

I1I-V semiconductors
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Figure 26 Crystal structure of cubic zinc sulfide.



Fundamental Types of Lattices

A typical symmetry operation is that of rotation about an axis that passes
through a lattice point. Lattices can be found such that one-, two-, three-, four-, and
sixfold rotation axes carry the lattice into itself, corresponding to rotations by 2,
2m/2, 2m/3, 21/4, and 2m/6 radians and by integral multiples of these rotations.

A single molecule properly designed can have any degree of rotational symmetry,
but an infinite periodic lattice cannot. We can make a crystal from molecules that
individually have a fivefold rotation axis, but we should not expect the lattice to
have a fivefold rotation axis.

Figure 7 A fivefold axis of symmetry can-

not exist in a periodic lattice because it is

not possible to fill the area of a plane with a

connected array of pentagons. We can, how-

ever, fill all the area of a plane with just two

Quasi-crystal ! distinct designs of “tiles” or elementary
polygons. A quasicrystal is a quasiperiodic
nonrandom assembly of two types of figures.
Quasicrystals are discussed at the end of
Chapter 2.

Five fold symmetry ?

inversion operation|is composed of a rotation of 7 followed by reflection in a plane

normal to the rotation axis; the total effect is to replace r by -r.
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In 1984 quasicrystals were first observed; these are structures which cannot
be indexed to any Bravais lattice and “which have symmetries intermediate
between a crystal and a liquid.” They were first observed in grains of size 2 um
In an alloy of Al with 14 at.% Mn. The smaller Mn atoms are each surrounded
by 12 Al atoms arranged at the corners of an icosahedron. The structure is
made up of parallel icosahedra attached at their edges. Crystals cannot exhibit
the fivefold symmetry of an icosahedron, but a crystal can be constructed by
nucleation at a center cell, followed by outward growth from there. All of the
space of a nodule cannot be filled by repeating the basic unit (see Figures 19
and 7 for the picture in two dimensions), although the “parallel” part of the
specification does give a long-range orientational order to the structure. It is
perhaps surprising that the x-ray diffraction pattern of such a structure can have
fivefold symmetry; that is how they were first observed.

The known quasicrystals are intermetallic alloys and are very poor
electrical conductors; they are nearly insulators with a somewhat well-defined
band gap (Chapter 7) at the Fermi level. They are of great interest intellectually
in expanding the definition of crystal lattice.
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= Penrose tiling

Figure 19 A quasicrystal tiling in two dimensions,
after the work of Penrose. The long-range
orientational order and the long-range non-periodic
order are shown.



DIRECT IMAGING OF ATOMIC STRUCTURE

Direct images of crystal structure have been produced by transmission
electron microscopy. Perhaps the most beautiful images are produced by scan-
ning tunneling microscopy; in STM (Chapter 19) one exploits the large varia-
tions in quantum tunneling as a function of the height of a fine metal tip above
the surface of a crystal.

STM Image

Figure 27 A scanning tunneling microscope image of atoms on a (111) surface of platinum at 4 K.
The nearest neighbor spacing is 2.78 A. (Photo courtesy of D. M. Eigler, IBM Research Division.)



Scanning Tunneling Microscope (STM)
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Figure 1.10 Scanning tunneling microscope. (From C. Julian Chen, Introduction to
‘Scanning Tunneling Microscopy, Oxford: Oxford University Press, 1993.)
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NONIDEAL CRYSTAL STRUCTURES

But no general proof has been given that the ideal crystal is the state of
minimum energy of identical atoms at absolute zero. At finite temperatures
this is not likely to be true. Many structures that occur in nature are not
entirely periodic; see the quasicrystals treated at the end of Chapter 2.

Random Stacking and Polytypism

Structures are known in which the stacking sequence of close-packed
planes is random. This is known as random stacking and may be thought of
as crystalline in two dimensions, and noncrystalline or glasslike in the third.

Polytypism is characterized by a stacking sequence with a long repeat unit
along the stacking axis. The best known example is zinc sulfide, ZnS, in which
more than 150 polytypes have been identified, with the longest periodicity
being 360 layers. Another example is silicon carbide, SiC, which occurs with
more than 45 stacking sequences of the close-packed layers.

The mechanism that induces such long range crystallographic order is not
a long range force as such, but is associated with the presence of spiral steps
due to dislocations in the growth nucleus (Chapter 21).




Chapter 21, Spiral crystal growth from dislocation line

Figure 20 Development of a spiral step produced by intersection of a screw dislocation with the
surface of a crystal as in Fig. 8. (F. C. Frank.)
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Figure 21 Phase contrast micrograph of a hexagonal spiral growth pattern on a SiC crystal. The
step height is 165 A. (A. R. Verma.)




/IQJ:Q:ELLI;E Growth for 3D-TlIs

3D TI films of the tetradymite family like Bi,Se; by van der Waals epitaxy,
ideally suited for transition metal chalcogenide layered structures

(a) Conventional epitaxy (b) Van der Waals epitaxy (a)
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Bi,Te; Surface Morphology Examined by AF
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CRYSTAL STRUCTURE DATA

In Table 3 we list the more common crystal structures and lattice struc-
tures of the elements. Values of the atomic concentration and the density are
given in Table 4.



Problems

1. Show for the hcp structure, the basis has two atoms: (1) one is at the origin, and (2)

the other is at the position of 2/3a,+1/3a, + 1/2 a,

. Hcp structure. Show that the c/a ratio for an ideal hexagonal close-packed structure
is (§)V2 = 1.633. If c/a is significantly larger than this value, the crystal structure may

be thought of as composed of planes of closely packed atoms, the planes being loosely
stacked.



