ANALYSIS OF ELASTIC STRAINS

10 nm We consider the elastic properties of a crystal viewed as a homogeneous
continuous medium rather than as a periodic array of atoms. The continuum
approximation is usually valid for elastic waves of wavelengths A longer than
10~° cm, which means for frequencies below 10" or 10'® Hz. Some of the ma-
terial below looks complicated because of the unavoidable multiplicity of sub-
scripts on the symbols. The basic physical ideas are simple: we use Hooke’s law
and Newton’s second law. [Hooke’s law]|states that in an elastic solid the strain
is directly proportional to the stress. The law applies to small strains only. We

say that we are in the nonlinear region when the strains are so large that
Hooke’s law is no longer satisfied. In linear region

We spec1fy the stram in terms of the components e.., Cyy> Cazo Cryy Cyzr Exy
which are defined below. We treat infinitesimal strains only We shall not
dlstmgmsh in our notation between isothermal (constant temperature) and
adiabatic (constant entropy) deformations. The small differences between the
isothermal and adiabatic elastic constants are not often of importance at room

temperature and below.




We imagine that three orthogonal vectors X, ¥, Z of unit length are embed-
ded securely in the unstrained solid, as shown in Fig. 14. After a small uniform
deformation of the solid has taken place, the axes are distorted in orientation
and in length. In a uniform deformation each primitive cell of the crystal is

deformed in the same way. The new axes x’, y’, z’ may be written in terms of
the old axes:

Define Deformation: =(l+e)xte,ytei;

I

€, X + (1 +€,)y +€,.2
=eXtey+t(l+e,)z.

; (26)
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The coefficients €,5 define the deformation; they are dimensionless and have
values < 1 if the strain is small. The original axes were of unit length, but the
new axes will not necessarily be of unit length. For example,

x'x'=1+2€,te e, e

Xz 2

whence 1" =1 + €, + . The fractional changes of length of the %, y, and 2
axes are €., €, €., respectively, to the first order.
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What is the effect of the deformation (26) on an atom originally at r =

xX + yy + zzP The origin is taken at some other atom. If the deformation
is uniform, then after deformation the point will be at the position

r' =xx’ +yy' +zz'. This is obviously correct if we choose the % axis such that
r = xX; then r’ = xx’ by definition of x". The displacement R of the deforma-

tion is defined by

R=r'—r=x(x'—%)+yly —§) +z(z' —2), (27)
or, from (26),

R(r) = (ve,, + ye, T 2€.)% + (xe,,+ ye

g TR )Y

Fley tie, + 2€,)7), (28)



This may be written in a more general form by introducing u, v, w such that
the displacement is given by

R(r) = u(r)x + o(r)y + w(r)z . (29)

If the deformation is nonuniform we must relate u, v, w to the local strains. We
take the origin of r close to the region of interest; then comparison of (28) and
(29) gives, by Taylor series expansion of R using R(0) = 0,

——

. ou _ du
K€ =X ; yeyx——y@ : etc. (30)

z

1 X', Y", Z' are not orthogonal
to each other !

(a) (b)

Figure 14 Coordinate axes for the description of the state of strain; the
orthogonal unit axes in the unstrained state (a) are deformed in the
strained state (b).
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It is usual to work with coetficients e, rather than €,;. We define the

strain components e, ¢,,, .. by the relations

yy>
s oo Ol e w00 __ _ow
em_ﬁm—a_x ? eyy_ew_@_y ’ €= €x ™ 9z (31)

using (30). The other strain components e, e,., e, are defined in terms of the
changes in angle between the axes: using (26) we may define

du , ov
e, =x 'y =¢€,te, =~ +-; Keep only
K YT T T ey o the 15t order terma
s T ov , Jw
X', Y’, Z' are not e =Y (2 Zey T €= By (32)
orthogonal
_ ! F o o Ju ow
to each other ! 6y =127 *X =em.+ex;—£ I

We may replace the = signs by = signs if we neglect terms of order €. The six
dimensionless coefficients e,z(=eg,) completely detine the strain.
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Dilation

The fractional increase of volume associated with a deformation is called
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of
edges X, ¥, Z has a volume after deformation of

Vi=x'-y' Xz, (33)
by virtue of a well-known result for the volume of a parallelepiped having

edges x', y', z'. From (26) we have Keep only the 15t order terms

1+e€, £, €,
e ! r— =~
X' oy X' = &, 1+€, €. |=1l+e,te,+e,. (34)
€., €. l1.+€,

Ay

Products of two strain components have been neglected. The dilation 6 is then
given by

Dilation 5 V' =V

v e te, T, . (35)
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Stress Components
The force acting on a unit area in the solid is defined as the stress. There
are |[nine stress components: X, X, X., Y,,Y,, Y., Z,, Z,, Z.. The capital letter

indicates the direction of the force, and the subscript indicates the normal to
the plane to which the force is applied. In Fig. 15 the stress component X,

represents a force applied in the x direction to a unit area of a plane whose
normal lies in the x direction; the stress component X, represents a force
applied in the x direction to a unit area of a plane whose normal lies in the y

direction. The number of independent stress components is reduced from
nine to six by applying to an elementary cube (as in Fig. 16) the condition that
the angular acceleration vanish, and hence that the total torque must be zero.

It follows that
Reduce 9 to 6 stress components

Yo=2y 3 Z.=X, ; X=X, . (36)

The six independent stress components may be taken as|X,, Yo Ly’ Yy Ly Xy

Stress components have the dimensions of force per unit area or
energy per unit volume. The strain components are ratios of lengths and are
dimensionless.




Figure 15 Stress component X, is a force applied in the =~ Figure 16 Demonstration that for a body in static equilibrium
x direction to a unit area of a plane whose normal lies in Y, = X,. The sum of the forces in the x direction is zero. The sum
the x direction; X, is applied in the x direction to a unit  of the forces in the y direction is also zero. The total force vanishes.
area of a plane whose normal lies in the y direction. The total torque about the origin is also zero if ¥, = X,,.

In static equilibrium,
total torque about the origin is zero




ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS

Hooke’s law tates that for sufficiently small deformations the strain is di-
rectly proportional to the stress, so that the strain components are linear func-
tions of the stress components:

e = SnX; t SIEY_;; + 8132 + S14Y; + Si5Z, + SlGXy 5
€y = SurX, + SusY, + SusZ. + SoaY, + SosZe + SueX, ; For six stress components
€. = S5 X, + S3Y,, + Sg3Z. + Sg4Y + SgsZ, + SzeX, (37)

€y = SuX, + 842Yy + Susl: + SuyY. + SusZ + SéGXy ;
€z = S51Xs + S5pY, + SsaZ. + S54Y. + SssZ + SzeX
exy = SeiXy + SgoYy + SesZ. + SeaY. + SesZy + SesXy -

X, = Cyey, + Croe,,t+ Cise.t Crept Cisezt Cm@_w ;
¥, = Coy, + Cogeyyt Coge,t Cogey.t Cose CQ(iea'y >

Z: = CSle.‘m‘ + CSQny+ C33€x+ C.'3=ley:+ CSSB;I—F CSGB,\'y >

Y, =Cyé, t C4gew+ Cuse..t Cueyet Cusent Cuglyy 5 (38)
Z, = Csey, T Csoeyyt Cyae.+ Cyget Cise t Csety
X, = Cgie + Cpoeyyt Coseeat Cosyet Cosrrt Cosly -
The quantities S;;, Sy ... are called elastic compliance constants or

elastic constants; the quantities Cy;, Cy,, ... are called the elastic stiffness
constants or moduli of elasticity. The Ss have the dimensions of [area]/
[force] or [volume]/[energy]. The C’s have the dimensions of [force]/[area] or
[energy]/[volume].
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Elastic Energy Density

The 36 constants in (37) or in (38) may be reduced in number by several
considerations. The elastic energy density U is a quadratic function of the
strains, in the approximation of Hooke’s law (recall the expression for the energy

of a stretched spring). Thus we may write _
The C’s are the elastic stiffness constants

1o V¢
U - E E E C)“uel\eﬂ 5 (39)
where the indices 1 through 6 are defined as:

l=xx; 2=yy; 3=zz; 4=yz; =zx; 6=uay. (40)
The C’s are related to the C’s of (38), as in (42) below.



|. 1St consideration

The stress components are found from the derivative of U with respect to
the associated strain component. This result follows from the definition of

potential energy. Consider the stress X, applied to one face of a unit cube, the
opposite face being held at rest:

_0U _aU _ ; 1< 5 | = ;
K= Se - Doy Cnep + Eﬁz (Cip +Cpiles . (41)

=2

Note that only the combination -é(CaB + Cp,) enters the stress-strain relations.
It follows that the elastic stiffness constants are symmetrical:

1

Thus the thirty-six elastic stiffness constants are reduced to twenty-one.

Reduce 36 down to 21!
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II. 2nd Consideration

Elastic Stiffness Constants of Cubic Crystals

The number of independent elastic stiffness constants is reduced further

if the crystal possesses symmetry elements. We now show that in cubic crystals

there are only three independent stiffness constants.
We assert that the elastic energy density of a cubic crystal is

e 2 4 2 2y 1 2 2 | 9
U= @(em T8, Feg) 26’93 tey Ty @eyyem + et e, , (43)

and that no other quadratic terms occur; that is,

(eﬂexy + U ) ; (ey::.ez,:c _I_ i .) ; (exteyz + o .) (44)

do not occur.
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The minimum symmetry requirement for a cubic structure is the exis-
tence of four three-fold rotation axes. The axes are in the [111] and equivalent

directions (Fig. 17). The effect of a rotation of 277/3 about these four axes is to
interchange the x, y, z axes according to the schemes

XY ~>Z >

>

=Ry (45)
—X—>Yy—>z2—>—x

2

X-Bg—r=y—sy ;

>

according to the axis chosen. Under the first of these schemes, for example,

ez + eiy + e, —)e + e +igl i
and similarly for the other terms in parentheses in (43). Thus (43) is invariant
under the operations considered. But each of the terms exhibited in (44) is
odd in one or more indices. A rotation in the set (45) can be found which will
change the sign of the term, because e,, = —ey—y), for example. Thus the

xy
terms (44) are not invariant under the required operations.



Figure 17 Rotation by 27/3 about the axis
marked 3 changes x — y; y — z; and z = x.
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It remains to verify that the numerical factors in (43) are correct. By (41),
dU/de,, = X, = C 16, + Ciole,, +e..) . (46)

The appearance of C,e,, agrees with (38). On further comparison, we see that

Further, from (43),
BU/aexy = Xy == C44exy 3 l (48)

on comparison with (38) we have

Cep =Co=Cgi=Cp=Cg=0 ; Coe = Cyy . (49)
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Thus from (43) we find that the array of values of the elastic stiffness
constants is reduced for a cubic crystal to the matrix

€ €

¥y = y=

We have only
C11’ C12’ C44

(50)

D

For cubic crystals the stiffness and compliance constants are related by

Ciy=1/8y ; Cpu—Ci=(S11—S1)™";

2

Cpy+ 20, = (511 + 255, )—1 . (51)

These relations follow on evaluating the inverse matrix to (50).
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Bulk Modulus and Compressibility

Consider the uniform dilation e,, = Cpy = €z = 56. For this deformation the
energy density (43) of a cubic crystal is

U=4(Cy; +2C5)8° . (52)

We may define the|bulk modulus B|by the relation

U=3Bé&? , (53)

which is equivalent to the definition —V dp/dV. For a cubic crystal,

B = %(Cn +2Cy) (54)

The|compressibility K is defined as K = 1/B. |Values of B and K are given in
Table 3.




