Optical Spectroscopy in Nanoscience
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@ Introduction

@ Optical microscopy

® Semiconductor quantum dots

® Single-molecule spectroscopy

® Raman scattering

@ Plasmon resonance in nanostructures

® SERS and nano-scaled Raman spectroscopy
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Optical spectro-microscopy setup
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Optical microscopy
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e Rayleigh criteria:
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Confocal microscopy
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Linear optics vs. nonlinear optics

Linear optics

Input wave O Emitted wave

Molecule

Energy >

Increasing

Input light Emitted light
photon energy photon energy

Molecular energy levels

photon energy

Dr. Juen-Kai Wang, CCMS & IAMS

Nonlinear optics
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Multiphoton fluorescence microscopy
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Harmonic-generation microscopy
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e It can be combined with multiphoton fluorescence
microscopy easily.

e Forward and backward detection.

e It requires no fluorescent specie.

e It is reflected to structure-related optical properties.

e More sensitive detection.

e Depth probing!




Scanning Near-field Optical Microscopy (SNOM)
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Scanning tunneling
optical microscope
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B. Hecht et al., J. Chem. Phys. 112, 7761 (2000).



SNOM setup
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Quantization in nanostructures
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Absorption and emission in nanostructures
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Colloidal semiconductor nanocrystals
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Colloidal PbSe nanocrystals

Dr. Juen-Kai Wang, CCMS & IAMS

.’ &

g

ko e

9 nm 70 nm

(200)

Absorbance (arbitrary units)

100 |-

(331)

Intensity (arbitrary units)

20 40 60 80 100 1000 1500 2000 2500
26 (degrees) Wavelength (nm)

C. B. Murray et al., IBM J. Rev. Dev. 45, 47 (2001).



Single nanocrystal spectroscopy of CdSe
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Ensemble emission spectra of CdSe nanocrystals
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ZnO nanolasers
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Single GaN nanowire lasers
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Applications of nanocrystals in bio-imaging
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X. Michalet et al., Single Mol. 2, 261 (2001).



PL spectroscopy of single GaAs QD’s
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Microscopic technigues used in SMS
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Why single-molecule spectroscopy?
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® Measurements on single molecules in a sample differ because their
environments are different, or in the case large and complex molecules
such as proteins, because they present a number of different
conformations.

® Single-molecule studies show dynamical fluctuations (time-resolved
changes in molecular properties), particularly when dealing with kinetic
experiments of complex systems, like proteins. By looking at a single
molecule, we select only one state or one formation at a given time.

® A single molecule can serve as a nano-probe to its local environment
and local external perturbations (such as pressure, electric and
magnetic fields).



Applications of SMS
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Local nonuniform distribution

Local dynamics

Photophysics and photochemistry
Diffusional motions

Comformational motions of macromolecules

Chemical activitivies



Single molecule imaging
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Hybrid space-frequency image of
pentacene in a p-terphenyl crystal

Oxanine 720 dispersed on a PMMA film

W. E. Moerner and M. Orrit, Science 283, 1670 (1999).



Single molecule spectroscopy
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Single-biomolecule study schemes
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C. V. Raman and his instrument
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Sir C. V. Raman Raman’s spectrograph



Raman spectrum of CCl, by C. V. Raman
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Raman scattering
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Comparison of IR and Raman spectroscopy
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Near-IR Mid-IR Raman
Spectral range (cm'1) 13,300-3300 4000-400 4000-50
Analysis of:
Gases | No Yes Yes
Liquids | Yes Yes Yes
Solids | Yes Yes Yes
Aqueous systems | Difficult Very difficult Yes
Macroscopic samples | Yes Yes Yes
Microscopic samples | No Yes Yes
Signal Strong Strong Weak
Sampling Easy Difficult Easy
Through glass windows Yes No Yes
In situ No No Yes
Quantitative Yes Difficult Yes
Noninvasive Yes No Yes
Fiber optic interfacing Yes No Yes
Information content Low. Limited to O-H, N-H, and High High
C—H vibrations
Reaction monitoring and Requires chemometrics Yes Yes
modeling




Commercial Raman instruments
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CPM 2000, WITec

LabRam HR, Jobin Yvon

R

InVia Raman microscope, Renishaw Raman Rnx 1, Kaiser Optical Systems




Raman setup
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Excitation wavelength considerations-I
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Excitation wavelength considerations-II
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Aexc > 800 nm 400 nm < dgxe <800 nm Aexc <400 nm

(NIR excitation) (visible excitation) (UV excitation)
Raman cross section Small Medium Large
Probing depth Long Medium Small
Resonant Raman No Yes Yes

Fluorescence background No Some Significant

Spatial resolution Low Medium High
Detection sensitivity Low Medium High




Confocal Raman microscopy
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Micro Raman of CNT under local strain
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S. B. Cronion et al., Phys. Rev. Lett. 93, 167401 (2004).



Micro Raman studies of graphite edges
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Near-field Raman spectroscopy

Jobin Yvon
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Lycurgus Cup in Roman times
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The glass appears green in
daylight (reflected light),
but red when the light is
transmitted from the inside
of the vessel.

The Lycurgus Cup, Roman (4th century AD), British Museum
F. E. Wagner et al., Nature 407, 691 (2000).



Mysterious red color in Lycurgus Cup
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X-ray analysis:

70% Ag + 30% Au
+ak Lycurgus Cup
i Modern Glass
50
40
a0
20 S0nm
10 .
e E |
Slicen  Sodium - Caldum These Ag-Au nanoparticles (~300 ppm)
dioxide oxide oxide

scatter the light, rather in the same way
The same composition that fine particles in the atmosphere cause
as modern glass a ‘red sky at night’ effect. They cause the
color effects shown by the Cup.

The Lycurgus Cup, Roman (4th century AD), British Museum (www.thebritishmuseum.ac.uk)




Ag and Cu nanoparticles in gold Lustre
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G. Padeletti and P. Fermo, Appl. Phys. A 76, 515 (2003).
S. Padovani et al., J. Appl. Phys. 93, 10058 (2003).
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Stained glasses
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Reynard the Fox The Ascent of Elijah
early 15-th century, Holy Cross Church c.1863, Trinity Methodist Church

The Stained Glass Museum (www.stainedglassmuseum.org)



Faraday’'s works on Au nanoparticles
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Faraday-Tyndall Effect

A solution of Gold colloids Faraday’s slides
gold chloride Prepared in 1856, in conjunction
with Faraday’s research on finely-
divided gold

(The Royal Institution of Great Britain)

M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1857).
R. D. Tweney, Department of Psychology, Bowling Green State University, USA (personal.bgsu.edu/_tweney)



Scattering by a metal sphere
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Induced dipole by the applied field
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Electron collective motion in metal clusters
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Au nanospheres
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Au nanorods

Dr. Juen-Kai Wang, CCMS & IAMS

1.2 1 1 1 1 |
L Longitudinal mode |
5
© 0.8 F ~
© Transverse mode
o
= 0.6
=
2 0.4
o]
<C
0.2
| 1 | ] 1

0
400 500 600 700 800 900 1000
Wavelength (nm)

S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).



Ag nanorods
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C. J. Murphy and N. R. Jana, Adv. Mater. 14, 80 (2002)



Shape-dependent plasmons
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SPR in single metallic nanoparticles
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Simulations of Ag nanoparticles
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Spectroscopy of single holes
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T. W. Ebbesen, Nature 445, 39 (2007)



Subwavelength hole array
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Spectroscopy of nanohole patterns
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Comparison of optical microscopes
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® Performing optical spectroscopy in nanometer scales is one of the critical
steps in the development of nanoscience and nanotechnology.

® Taking advantage of localized enhanced field generated by plasmon, optical
signal generated in nanometer scale can be observed macroscopically.

® New physics involving light-matter interaction in nanometer scales need to
be developed.
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Limits of aperture-type SNOM
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¢ section

aperture
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Reproduced from Dr. Keilmann



Tip-enhanced optical spectroscopy
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Scattering-SNOM
- collecting elastic scattering signal

Tip-enhanced spectroscopy
- collecting inelastic scattering signal
(Raman or fluorescence)




Model of tip-sample near-field interaction

Far-field scattering:
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Reproduced from Dr. Keilmann



Spatial resolution

Dr. Juen-Kai Wang, CCMS & IAMS
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Material contrast

Dr. Juen-Kai Wang, CCMS & IAMS

Polystyrene sphere on Si(111)

AFM image s-SNOM image
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® Detection limit of An: 0.02



Near-field observation of ellipical hole arrays

Dr. Juen-Kai Wana. CCMS & IAMS
Near-field images
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Far-field transmission images

TM-mode excitation

TE-mode excitation

TM-mode excitation TE-mode excitation

A TM-mode excitation gives an enhanced transmission image and also produces an emission image at an
adjacent pattern.

Clear surface plasmon only exits in TM-mode excitation and prominent dipole field oscillation emerges at each
elliptical hole. This confirms that the surface plasmon is the superposition of local plasmon of holes.



Apertureless SNOM with single CNT

Dr. Juen-Kai Wang, CCMS & IAMS

AFM image Amplitude image Phase image

R. Hillenbrand et al., Appl. Phys. Lett. 83, 368 (2003).



SERS setup

Dr. Juen-Kai Wang, CCMS & IAMS
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K. Kneipp et al., Bioimaging 6, 104 (1998).



Comparison between Raman and SERS

Dr. Juen-Kai Wang, CCMS & IAMS
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K. Kneipp et al., Bioimaging 6, 104 (1998).



Chemical and EM field enhancement

Chemical enhancement
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Metal Adsorbate

Dr. Juen-Kai Wang, CCMS & IAMS

Electromagnetic field enhancement
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SERS of living cells with Au nanoparticles-II

Dr. Juen-Kai Wang, CCMS & IAMS

a) 10 um b) 10 um

K. Kneipp et al., Appl. Spectrosc. 56, 150 (2002).



Single-molecule Raman spectroscopy (SMRS)

Dr. Juen-Kai Wang, CCMS & IAMS
Polarized single molecule Raman spectra of dye-to-colloidal particles
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S. Nie and S. R. Emory, Science 275, 1102 (1997).



Plasmon-enhanced Raman detection of DNA and RNA

Dr. Juen-Kai Wang, CCMS & IAMS
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Y. C. Cao, R. Jin and C. A. Mirkin, Science 297, 1536 (2002).



Near-field fluorescence spectroscopy

Dr. Juen-Kai Wang, CCMS & IAMS
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Fluorescence enhancement near a silicon tip Tip-enhanced fluorescence image of quantum dots

J.M. Gerton et al., Phys. Rev. Lett. 93, 180801 (2004).



Near-field Raman spectroscopy of CNT

Dr. Juen-Kai Wang, CCMS & IAMS

Near-field Raman Shear-force image
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A. Hartschuh, E. J. Sdnchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 095503 (2003).



