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Overview of Quantum Technology



Two important technologies
that are being developed
started from the beginning of
the 21th century
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unesco Quantum Science
— and Technology

100 years of quantum is just the beginning...

On June 7, 2024, the United Nations proclaimed 2025 as the International Year of Quantum Science and
Technology (1YQ). According to the proclamation, this year-long, worldwide initiative will "be observed
through activities at all levels aimed at increasing public awareness of the importance of quantum science

and applications."

The year 2025 was chosen for this International Year as it recognizes 100 years since the initial development
of quantum mechanics. Join us in engaging with quantum science and technology education and

celebration throughout 2025!
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https://doi.org/10.1038/s41746-024-01345-9

Artificial Intelligence awarded two Nobel

Prizes for innovations that will shape the

future of medicine

Ben Li & Stephen Gilbert

" Check for updates

John J. Hopfield and Geoffrey E. Hinton were
awarded the 2024 Nobel Prize in Physics for
developing machine learning technology using
artificial neural networks. In Chemistry it was
awarded to Demis Hassabis and John M. Jumper
for developing an Al algorithm that solved the
50-year protein structure prediction challenge. This
highlights Al's impact on science, medicine and
society; however, the winners acknowledge ethical
aspects of Al that must be considered.

In October 2024, the Nobel Committees in Stodkholm announced that the
prizes in Physics and Chemistry were awarded to work related to artificial
intelligence (AI)". The prize in Physics was awarded to John J. Hopfield and
Geoffrey E. Hinton (formedy of Google) for “foundational discoveries and
inventions that enable machine learning with artificial neural networks'.”
The prize in Chemistry was awarded one-half to David Baker for “com-
putational protein design” and one-half to Demis Hassabis and John M.
Jumper (of DeepMind) for “protein structure prediction®.” The historic
announcement of these Nobel Prizes for Al-related work has been widely

aggregation with other ML methods and architectures brought us to the ML
technologies of today, including the overlapping concepts and imple-
mentations of deep learning, convolution neural networks, transformer and
attention-based architectures (advanced neural networks that excel at, for
example, natural language processing), large language models and large
multimodal models''. This is an evolving landscape of multipurpose
foundation technologies, that some have compared to the printing press or
the Internet in terms of reach and impact'”. As an example of this, and
maybe as a portent of what is to come, the ML of the 2024 Nobel Prize in
Physics even enabled the groundbreaking discovery associated with the
2024 Nobel Prize in Chemistry”.

2024 Nobel Prize in Chemistry

Hassabis and Jumper developed an AI model that accurately predicts pro-
tein structures from their amino acid sequences, which is one of the most
intriguing and famous scientific challenges of the last 50 years’. As every
biology student learns in school, a gene codes simply for the amino acid
sequence, (with a few exceptions), and based on the environment of the cell,
this sequence folds and assembles into a definitive and complex three-
dimensional structure that dictates its function”. The 3D protein (again,
with a few exceptions) is always the same, and thus, it should be possible to
predict its structure just from the gene sequence, and perhaps knowledge of
the cell environment”, Qver 200 million amino acid sequences have been



AlphaFold is an artificial intelligence
(Al) program developed by DeepMind,
a subsidiary of Alphabet, which
performs predictions of protein
structure. It is designed using deep
learning techniques.

AlphaFold has two versions:
AlphaFold 1 (2018) and AlphaFold 2
(2020).
AlphaFold 1 (2018) was placed first
In the overall rankings of the 13th
Critical Assessment of Structure
Prediction (CASP) in December 2018.
It was particularly successful at
predicting the most accurate structures
for targets rated as most difficult by
the competition organizers.

Primary structure | - < - - 4 44 -
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Secondary structure

Alpha helix and beta
sheet structures
produced by hydrogen
bonds forming within
the polypeptide

Beta sheet Alpha helix

Tertiary structure

3D overall fold of the Region of
protein containing secondary
secondary structures structure —
alpha helix
Region of secondary
structure — beta sheet
Random coil

Quaternary structure
Multi-subunit complex
where each subunit is a
distinct polypeptide
chain

Polypeptide 1

Polypeptide 2

Polypeptide 3



It is foreseeable that
successful combination of
guantum technology and
artificial intelligence will be
the next milestone!



Recent Breakthrough of Quantum Technology
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Google moves toward quantum supremacy with 72-qubit
IBM Inches Closer To Quantum computer
. . Google contends its Bristlecone chip
SI“]remacy W|th 16- And 17-uuh|t demoes 1% errorI ratersI for readou;
0.1% for single-qubit gates, and 0.6%

for two-qubit gates. S—

Quantum Gomputers

by Lucian Armasu May 17, 2017 at 9:00 AM

IBM Raises the
Bar with a 50-
Qubit Quantum 2t
Computer sl

by WillKnight November 10, 2017

o (fhR#tadt18EE) 2017/06/18 13:52
CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy
REWETHESETR A2EEEN L. RITEFNITT

By Jeremy Hsu (fauthor/jeremy-—hsu)
Posted 9 Jan 2018 | 0200 GMT

20M175E09 B07H 07:51 hFBETFH
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Proto: Intel
Intsl's new 48-qubit supsrconducting quantum test chip is named Tangle Lake.

Intel Roadmap: 1000 qubits 5-7 years



Google claims "quantum supremacy' for computer - BBC News

Google claims 'quantum supremacy' for
computer

By Paul Rincon
Science editor, BBC News website

23 October 2019 f © ¥ [ <« shae

The technology giant's Sycamore quantum processor was able
to perform a specific task in 200 seconds that would take the
world's best supercomputer 10.000 vears to complete.



Early development

«1982 R. P. Feynman proposed the idea of a ‘quantum
computer', a computer that uses the effects of quantum
mechanics

*1984 BB84 Quantum key distribution

*1994 Shor’s algorithm (fast prime factorization)

1995 Quantum error correction (Shor and Steane)

*1996 Grover’s searching algorithm



Promoted by Nano-technology

Moore’'s Law Challenges Below 10nm: Technology, Design and Economic
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Quantum Information Science- [ #2545 |

Cuantum Information Science (QIS) is an emerging field with the potential to cause

revolutionary advances in fields of science and engineering involving ...
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Breakthrough in Superconducting
Qubit (2015)

Threshold
. SCHOELKOPF'S LAW for error-cor.
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Devoret & Schoelkopf, Science 339, 1169 (2013)

10° improvement :
[gnite the technology community’s hope for quantum technology!



Developing Critical Point of Quantum Technology

Quantum Technology: Technology that directly utilizes the properties of quantum wave
functions for information processing and calculation. The realization of quantum computers
can be used to solve problems that are difficult for traditional computers Absolutely secure
communication networks, research and development of new drugs, design of new materials,
and new forms of artificial intelligence may bring about revolutionary changes

Berkeley Lab Supercomputer Breaks New Ground in
Quantum Computing Simulation
Michael Feldman | April 12, 2017 11:26 CEST

Cori, the fifth fastest supercomputerin the
world, has been used to model a 45-qubit
circuit

Classical computers 50 qubit  Quantum supremacy

»
»

Qubit number

50 qubit » Second quantum revolution


https://www.top500.org/project/top500-news-team/

Facing the arrival of possible second quantum revolution

A number of projects are initiated such as Europe Quantum Manifesto, UK National Quantum Technologies
Programme, Centre for Quantum Technologies in Singapore, USA DARPA call program,...)

426 | NATURE | VOL 532 | 28 APRIL 2016

A

- N
A €1-billion (US$1.1-billion) ip project could

erillion— euro boost

for quantum tech

Microsoft just upped its multi-million bet on quantum
computing

Microsoft pours millions into a new Station Q outpost in Copenhagen.

Liam Tung Innovation

The DOE Is Giving Berkeley Lab $3 Million
Annually for Quantum Computing Research

R & X —EBREFIHEREANMEEEEER
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QuantumManifesto

A New Era of Technology May 2016

The Quantum Manifesto calls upon Member States and the European Commission to launch a
€1 billion Flagship-scale Initiative in Quantum Technology, preparing for a start in 2018 within
the European H2020 research and innovation framework programme.

This in itiatiJe aims to place Europe at the forefront of the second quantum rlevolution now

Newsroom

Australia’s first quantum computing
company launches at UNSW

23 AUG 2017 | UNSW MEDIA

Australia’s first quantum puting pany, Silicon Q

Computing Pty Ltd, has been launched to ady e the develop and
commercialisation of UNSW Sydney’s world-leading quantum computing
technology.
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Promise of quantum technology ?

Eniac 1943




Typical Misunderstanding
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UCSB/Google nine X-mon qubit processor

|:> Need to understand What Quantum
Mechanics can do?



Quantum Technology

Quantum information Science

Applications and Programming:
Quantum Algorithms, Programming, Protocols
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Status and Challenge
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= |BM launches its most powerful quantum

. . :
- computer with 433 qubits 5022

By Jane Lanhee Lee

IBM Quantum




Newsin focus

algorithms that harness these indicators to
estimate aperson’s ‘biological age’, which can
be higher or lower than their chronological
age’.

Another hallmark of ageing is a shift in the
proteins that the body produces. To explore
how organs age, Oh and his colleagues first
analysed nearly 5,000 proteins in blood sam-
ples from 1,398 healthy adults. They iden-
tified about 850 proteins that originated
mainly from a single organ and trained a
machine-learning algorithm to predict a per-
son’sage onthebasis of the levels of these pro-
teins. They validated their model using blood
samples from more than 4,000 other people.

The results showed that an organ’s biolog-
ical ageis linked to disease risk. For example,
roughly 2% of participants had accelerated
heart ageing — that is, their levels of blood
proteins relating to heart ageing differed
substantially from those of other people of
the same age. Having aprematurely old heart
was linked to a 250% increased risk of heart
failure, the authors found.

Marking time

Researchers have used epigenetic markers
to show that the pace of organ ageing varies
between individuals*. But the link between
epigenetic changesand ageingis unclear, says
Matt Kaeberlein, aspecialistin the biology of
ageing and chief executive of Optispan, a bio-
technology company inSeattle, Washington.
Proteins are “much closer to the downstream
mechanisms that might be driving ageing”,
he says.

Combining various hallmarks of ageing
could lead to more-robust tests of organ age

IBM RELEASES

FIRST-EVER1,000-QUBIT

QUANTUM CHIP

The company will now focus on developing
smaller, more reliable processors.

By Davide Castelvecchi

BM has unveiled the first quantum

computer with more than 1,000 qubits

— the equivalent of the digital bitsin an

ordinary computer. But the company

says that it will now shift gears and focus
on making its machines more error-resistant
rather than larger.

For years, IBM has been following a
quantum-computing road map that roughly
doubledthe number of qubits everyyear. The
chip unveiled on 4 December, called Condor,
has1,121superconducting qubitsarrangedin

ahoneycomb pattern.TtfollowsonfromIBM’S
other record-setting, bird-named machines,
including a 127-qubit chip called Eagle,
released in 2021 and a 433-qubit one called
Osprey, announced last year.

Quantum computers promise to perform
certain computations that are beyond the
reach of classical computers. They will do so
by exploiting uniquely quantum phenomena,
such as entanglement and superposition,
which allow multiple qubits to exist in multi-
ple collective states at once.

IBM’s Heron quantum processor.

2023). The company says that it will now
focus on building chips designed to hold a
few qLDPC-corrected qubits in just 400 or so
physical qubits, and then networking those
chips together.

The IBM preprint is “excellent theoreti-
cal work”, says Mikhail Lukin, a physicist at

RYAN LAVINE FORIEM
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Status

Near-term
applications
that are beyond
the capability of
classical
computers

Development assessment

»

50 -100 qubits 1000

Noisy Intermediate
quantum computing
regime ~ quantum
simulation ~ optimization

Intermediate scale & rate

gquantum communication
200km

1000-10,000

Probably 5-10 years

1000km

1000,000...

Universal
Quantum
computing

[

global quantum
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IBM Aims For 100,000-Qubit Machine By 2033, Pioneering
‘Quantum-Centric Supercomputing’

Quantum Computing Business Matt Swayne * May 23, 2023

|
/I' -~
P

Development Roadmap 1BM Quantum
2016-2019 @ 2020e 2021e 2022e 2023e 2024 2025 2026 2027 2028 2029 2033+
Run quantum circuits Release multi- Enhancingquantum  Bring dynamic Enhancingquantum  Improvingquantum  Enhancingquantum  Improvingquantum  Improvingquantum  Improvingquantum  Improvingquantum  Beyond 2033, quantum-
on the 1BM Quantum Platform dimensional execution speedby  circuits to unlack execution speed by circuit quality and execution speedand  circuit quality to circuit quality to circuit quality to circuit quality to centric supercomputers.
roadmap publicly 100x with Qiskit more computations 5x with quantum speed to allow 5K parallelization with allow 7.5K gates allow 10K gates allow 15K gates allow 100M gates will include 1000°s of
with initial aim Runtime serverless and gates with partitiening and logical qubits unlocking
focused on scaling Execution modes parametric circuits quantum modularity the full power of

quantum computing

Platform
Data Scientist

Code assistant &) Functions Mapping Collection Specific Libraries General purpose
QC libraries

Middleware

Researchers

Quantum
Physicist
Jtion Modes ’ amin ami 7 Flamin, Starling (100M) Blue Jay (1B)
Error Mit Error correction Error correction
100M gates 18 gates
qubit 200 qubits 2000 qubi
Penguin santum modular Error corrected

modularity
2 qubits

Software Application @  NeIHIH Serverless ¥ Alenhanced ¥  Resource  ®  Scalable circuit
Innovation modules Demonstrate quantum management knitting

Modules for domain conceptsof Protatype System partitioning to Circuit partitioning

specific application 5 i f AT enable parallel with classical

and algorithm Supercomputing ‘enhanced circuit axecution recanstruction at HPC

le

Hardware Flamir Starling
Innovation

Demonstrate path ta
improved quali

. Executed by IBM
W) on target

IBM Quantum / @ 2023 IBM Corporation



Quantum Manifesto (European ur_mion) _ _
Quantum Technologies Timeline




Effort for establishing quantum network

DiVincenzo criteria

> A scalable physical system with well
characterized qubits. ?

> The ability to initialize the state of the qubits to a
simple fiducial state. v

» Long relevant decoherence times (>10% operation time)
\/

» A "universal” set of quantum gates. V

» A qubit-specific measurement capability. v

» The ability to interconvert stationary and flying
qubits.

» The ability to faithfully transmit flying qubits



Challenge for qguantum communication and r

Decay in optical fibre

Major Challenge — Fiber Attenuation
ID,I')

No clone theorem !

106 N Laet = 20km

1000 3 = L= 4_ ﬁu
1 . (EFREHEAER)
]

0.001
10-*

Fale (bilysea)

L 4

200 400 600  ROO 1000
L (kem)

Need to develop quantum repeater (quantum repe
to break through the 200km limit

Key technologies: quantum m

quantum teleportation,

entanglement swapping
Credit: Alan Stonebraker



photon: flying qubit, decay length
200km

European scientists propose world’s largest quantum
network, between Earth and the ISS

April 9, 2013 at 8:50 am

Qubit Analyzer|  Laser Ranging

- 100 ms ¥
10 ns L
. L l L l .- " n

Qubits SLR Pulse

FIG. 1 (color online). Scheme of the satellite QKD demonstr-
ation. Qubit pulses are sent at a 100 MHz repetition rate and
are reflected back to the single photon level from the satellite,
thus mimicking a QKD source in space. Synchronization was
performed by using the bright SLR pulses at a repetition rate
of 10 Hz.

Phys. Rev. Lett. 115, 040502 (2015)
Itallian group, qubit error ratio 4.6%

=) satellite quantum
communication

The world's first
guantum communication
satellite (China), viable
for 300s

(shsrit&bi8AE) 2017/06/18 13:52
EEHETHEE TR EI%H{E@%EEH

EETW 13
oo

Phys Rev Lett. 120
030501( 2018)
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Recent developments of qguantum communication r

UK

Austria

QKD network
integrated with
commercial
communication

-

QKD network
of 8 nodes
demonstrated
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China

2,000 km QKD
network between
Shanghai and
Beijing is underway

0 °
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*What is quantum technology? Quantum
Computer? Quantum Phenomenon?



Typical Quantum Phenomenon

Gold is not
shining



Macroscopic quantum
phenornena : usually requir-e low T
and coRerenece g

Creeplng of liguid
helivm

http://www.youtube.com/watch?v=2Z6UJbwx

D71



https://youtu.be/2Z6UJbwxBZI

818 |CIs



http://youtu.be/2Z6UJbwxBZI

Macroscopic quantum phenomenon: superconduc

fl - ©

T>T, T<T,

https://www.youtube.com/watch?v=D3koi9jfl7M


super.wmv
super.wmv

Essential of Quantum Mechanics

A way to describe a particle
that pass two doors (qubit) at
the same time.




Rechard Feynman
(1965 Nobel Prize)

I think that it is fair to say that no one
understands the quantum theory...



Quantum Mechanics: wave and particle duality,
matter needs to be described using both concept of
particle and wave:

Matter wave dictates where the particle goes to, but
when it is measured, one piece of particle is found.




Let us examine the statement
“passing two door at the same
time”
Pass through one of doors (ad

/

Accumulated nun

Electron
gun

/I\




Shooting one electron each time
(Tonomura et al, 1989)



doubleslite-n.wmv

umber of events-> probability

Fig. 39-8 Photographs showing the buildup of an interference
pattern by a beam of electrons in a two-slit interference
experiment like that of Fig. 39-6. Matter waves, like light
waves, are probability waves. From top to bottom the ap-
proximate numbers of electrons involved are 7, 100, 3000,
20 000, and 70 000.




A great puzzle

Electron | 1 Electron_ IS not passing 1 or 2,
—> Instead it passes through 1 and 2

gun N\ 2 .

at the same time.




‘N &

VA MCHE A IIMENL

Nature 395, 33(1998)
PRL70,2359(1993)




Which way expt. by using photons

198Hg+

/

polarized

194 nm
light bearn @

Phys. Rev. Lett. 70,2359(1993)

Ground state: 6s°S,,,, Excited state: 6p2P,,
degenerate: m;

Photons: c&n polarized
n: Am;=0 two atoms are in the same state
c: A |m,|=1 two atoms are not in the same state



Passmg two doors at the same time

(a) |

E 1 n|polarized
=

= | N\

- WW‘M'\

= 0

=

R

T Passing one of the doorgh}

LS ¢ polarized

. ¢

Electron version: Applied Physics Letters 97, 263101 (2010)



Concept of quantum bit (qubit)

1 -0,[0)
2 > 1,[1)

Class bit: O or1

gubit: can be 0 and at the same tin
When it is measured, onlyOor 1is t |

Obtained (collapse of state)

1 .
double slit = v (|0) + |1)) < superposition ¥ =¥ + Y

75



Advantage of gubit

*0and 1 can be input O or 1 can only be input separately
at once

Classical computer—1—0

Quantum computer— «(0) + g|1)— |
* more manipulation space:

0 _ 0 |a|? is the probability
) = al0) + B|1) = cos|1) + el sin—10)  for finding 0
|B|is the probability
for finding 1

al® +1BI* =1

Quantum: whole sphere -~ classical: 2 poin

1)



Puzzles In
Double-slit quantum eraser experin

Using photons




Which way experiment by using entangled photon s

Polarization Detector D,

Entanglement: \
ps )

xy=>QWP1 (R) e .
QWP2(L) [ 0T | Colneidence
yx=>QWP1 (L)-n i
QWP 2 (R)

Dmia-h:l:t /
DdetinrD.



Which way experiment by detecting polariza

e
J o
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w 120 !
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Quantum eraser

Linear
polarized D""““”i’:
w

along \ Polarimr ‘

s (E, E)e(lwt—kz) \

V2 |
Comncidence
Counder

QWP1 /
22 Y



Quantum eraser
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Delayed Quantum eraser

: Detector D,
Make it very N
long .

Polarzer

Before p photon T
encounter the \\
polarize r, S e
photon will be Counder
detected first.




Future affects past?
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Introduction and Vector Analysis

Electrostatics: description and basic properties
Electric potentials and methods of their evaluation
Electric fields in matter

Magnetostatitics

Magnetic fields in matter

Electrodynamics

Conservation Laws

Electromagnetic waves

Special relativity and electrodynamics
Potentials and fields

Radiation
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4 &) Teaching F-mail

Chung-Yu Mou 03-5742537 office: Department of Physics Room 514

o

Principle and Application of Quantum Technology

2023 Spring Chung-Yu Mou
Syllabus

Teaching Assistant : Shih-Si Hsiao

email: tousiotousio@gmail.com

phone:

Course description

This course is designed for students with a background in science and engineering. Through detailed and systematic explanations, graduate students can master the basic principles of quantum technology. The main goal is to
introduce the principles behind the operation of quantum devices and their possible applications, especially the manufacture and processes involved in making these devices. For those technologies that are still under
development, we shall point it out at appropriate places and guide students to study in reports of final.

¢ Introduction to quantum phenomena and quantum mechanics
- interfere and basic quantum mechanics
Double-slit and related experiments
(Hamiltonian and Schrodinger Equation, Dirac Notation Operators in Quantum Mechanics, Heisenberg Uncertainty Wave Particle Duality, Coherence)
- quantization
- tunneling effect
- two-level system and spin
(quantum bit and measurement, Rabi. Oscillation, Ramsey oscillation)
- Many-particle state and entanglement (density matrix and decoherence)
-Quantum measurement and quantum bit
« Typical applications of quantum technology
- Quantum algorithm and universal quantum computer
- Quantum communication
- Quantum simulation and method of quantum annealing
- Quantum sensing
¢ Technique of quantum qubit
- Construction and manipulation of superconducting transmon qubit
- Construction and manipulation of qubit based on ion trap
- Construction and manipulation of silicon-based qubit
- Principle, construction and manipulation of topological qubit
- Principle and technique of photon-based qubit
- Other relevant qubit technique such as vacancy-based qubit in diamond
¢ Quantum communication
-Protocols of quantum key distributions and relevant technique for their realizations
- Single photon source, entangled-photon source, and single photon detector



Entangled photon source

Nonlinear crystal: BBO (beta-barium borate)

702.2 nm

P)
702.2 nm

(s)

Argonion 321 nm
pump <

laser

ﬁ
o = hw, + o Polarization 2 y
(energy conservation) 2 a"'44
Entanglement: T
nk = nky + hk, PS SP >

(momentum conservation) xy +YyX



Quarter wavelength plate (QWP)

Convert linearly polarized light into

circularly polarized light and vice versa

Using birefringent material (different indices of refraction
associlated with different crystallographic directions.)

y Linear Polarized along x
T e (E, O)ei(wt—kz)
— n, Circular polarized

X

%E (E, +iE)eliwt-k2) (4 right — left)

21TANL
Ao

Phase difference: T =

T _ It
Quarter wave: T' = . A




Route and obstacles to large scale quantum

computing .
Quantum error correction (E FFRE8)

Classical error correction: repeat bits & majority vote

Quantum: no clone theorem

0-000, 1- 111

a|0) + B1) — «|000) + B|111)

+ two ancillary qubits

L 4
000> + w|000> +
flIns | Bl

Syndrom

Error Location

[
e

Final State, |data) |ancilla)

No Error
Need more physical qubits than Qubit 1

- ] Qubit 2
the logical qubits! Qubit 3

o [000) [00) + B]111)]00)
«[100) |11) + B]011) |11)
«|010) |10) + 3]101) |10)
«|001) [01) + 8110} |01)



Stabilizer codes (surface

code

Best code for tolerazce of error (up to 1%): surface code (one

of stabilizer codes)

Repeat measurement of a quantum system using a complete set
of commuting stabilizer (operators), the system is forced to be
simultaneous and unigue eigenstate of all stabilizers.

225

® -
b1
l

~@ =T =P =0
- H
-
b !!xlxﬁ
b1
w =
O =@ =0 =x8=x0=xBx=x0
w0 H
= H
OB =x0x@g=x0x0 =0

-+
S
‘t

(open circles: data qubits,
filled circles: measurement qubits)

X =072 =0,

(Fowler et al .Phys. Rev. A 86, 032324, 2012)

41 data qubits but only 40 stabilizers X and Z

X = X1X2X3X4X5
ZL - Z6Z723ZSZQ



Thresholds for large scale quantum
computation

Best C or tolerance of error (up to 1%): surface code

However, this is at the sacrifice of many physical qubits for logical
qubits: one logical qubit needs 103-104 physical qubits

10-1 Error probability p < p,y,, P; decreases with
- increasing number (d) of of physical qubits
d=7 that define operator of logical qubit.
10-3 I
=11
=15
J - ﬁ:ﬁﬁ (Fowler et al .Phys. Rev. A 86, 032324, 2012)
1[}'5 ————— d=45

— d=55

104 103

Factorize a number of 6000 bits (~ 600 decimal digits)

= 4000 logical qubits and 130 Millions physical qubits, roughly 26.7
hours to do (100ns gate time) (classical THz computer,
>150000years)



Reference: Google 72 qubit and

strate

Limiting error rate

25250505
X X X X

X
X

X

X
X

X X
X XXXXXXX%

X X X X
X

X X X X
X%X%X%X%

%X%
X

X X X X
X

X

%

X
X

X
X

X
X
X
X%

107"

102 Error Correction Threshold
Google
Research

107 = Direction

i Useful error
Classically o, Near-term v
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