Principle and application of Quantum Technology Homework 4 Due: June 6, 2024

Ex 1 Consider a coupled system of a transmon and an LC resonator as shown in Fig.1. Asnwer the following questions.

FIG. 1: Coupled system of a transmon and an LC resonantor
(a) 5% Suppose θ describes the phase of the Josephson junction. By using θ and the Josephson energy E_{J}, the current operator I_{r} passsing through L, charge operators Q_{r} and Q_{q} on C_{r} amd C_{q} respectively, find the Hamiltonian that characterizing the whole system.
(b) $\mathbf{1 0 \%}$ By expanding $\cos \theta=1-\theta^{2} / 2!+\theta^{4} / 4$! to $O\left(\theta^{4}\right), H$ can be expressed in terms of the creation and annhiliation operators $c^{\dagger}, c, a^{\dagger}$, and a as

$$
H=\hbar \omega_{c} c^{\dagger} c+\hbar \omega_{q} a^{\dagger} a+\frac{\hbar \alpha}{2} a^{\dagger} a^{\dagger} a a-\hbar g\left(c^{\dagger}+c\right)\left(a^{\dagger}+a\right),
$$

find $\omega_{c}, \omega_{q}, \alpha$ and g.
Ex. 210%
Apply the quantum Fourier transform $U_{Q F T}$ to the state $|\psi\rangle=\frac{1}{2} \sum_{j=0}^{7} \cos (2 \pi j / 8)|j\rangle$. That is, find $U_{Q F T}|\psi\rangle$. Here $|j\rangle(j=0,1,2, \ldots, 7)$ are the basis states in 3 qubit Hilbert space with j represeting the binary number in decimal representation. For instance, $|7\rangle=|1\rangle \otimes|1\rangle \otimes|1\rangle$. $U_{Q F T}=\frac{1}{2 \sqrt{2}} \sum_{j=0}^{7} \sum_{k=0}^{7} e^{-i 2 \pi k j / 8}|k\rangle\langle j|$.

Ex. 3

Let $B_{1}=\{|H\rangle,|V\rangle\}$ denote an orthonormal basis in the Hilbert space of a photon. Here the state $|H\rangle$ and $|V\rangle$ represent the state of a photon with the horizontal and vertical polarization. Let $B_{2}=\left\{\left|\phi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|H\rangle+|V\rangle),\left|\phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|H\rangle-|V\rangle)\right\}$ denote a second orthonormal basis in the Hilbert space of a photon. These states are identified with the 45° and -45° polarization of a photon. Alice sends photons randomly prepared in one of
the four states $|H\rangle,|V\rangle,\left|\phi_{0}\right\rangle$ and $\left|\phi_{1}\right\rangle$ to Bob. Bob then randomly chooses a basis B_{1} or B_{2} to measure the polarization of the photon. All random decisions follow the uniform distribution. Alice and Bob interpret $|H\rangle$ as binary 0 and $|V\rangle$ as binary 1 in the basis B_{1}. They interpret $\left.\phi_{0}\right\rangle$ as binary 0 and $\left|\phi_{1}\right\rangle$ as binary 1 in the basis B_{2}.
(a) $\mathbf{1 0 \%}$ What is the probability that Bob measures the photon in the state prepared by Alice, i.e. what is the probability that the binary interpretation is identical for Alice and Bob?
(b) $\mathbf{1 0 \%}$ An eavesdropper (named Eve) intercepts the photons sent to Bob and then resends a photon to Bob. Eve also detects the photon polarization in one of the bases B1 or B 2 before resending. What is the probability that the binary interpretation is identical for Alice and Bob?

Ex 4 10\% page 233, problem 10-10
Ex. 5 5\% Page 233, problem 10-4

