
Principle and application of Quantum Technology

Homework 3 Due: May 9, 2024

Ex 1 10% Consider a two-state system with the Hamiltonian given by H = E1| 1〉 〈1 | +

E2| 2〉 〈2 | + γeiωt | 1〉 〈2 | + γe−iωt | 2〉 〈1 |. Suppose that initially, the system is in | 1〉 , find

the probability of finding it in the state of | 2〉 at a later time t.

Ex. 2

(a) 5% Given any two vectors, a and b, show that

(σ · a) (σ · b) = a · b + iσ· (a× b) .

(b) 5 % Suppose two spin-1/2 particles are known to be in the spin-singlet state. Let S
(1)
a

be the component of spin for one of the particles along â direction and S
(2)
b be the component

of spin for the remaining particle along b̂ direction. Show that

〈S(1)
a S

(2)
b 〉 = −~2

4
â · b̂ .

Ex.3 10% Page 97, problem 4-1.

Ex.4 10% Page 98, problem 4-3.

Ex.5 Wigner function

In Quantum mechanics, one can not define the probability density P(P,R) for finding par-

ticles with position R and momentum P. There is, however, a quantum analogy of the

classical distribution function P(P,R). This is known as the Wigner function, which is

defined as the transformation of the density operator ρ by

D(P,R) ≡ 1

(2π~)3

∫
d3r e−iP·r/~〈R− r/2|ρ|R + r/2〉.

However, unlike the classical distribution function, the function D(P,R) is not positive

definite and may become negative. To understand it, let us consider a pure state such that

ρ = |ψ〉〈ψ| for the following questions:

(a) 5% Show that ∫
d3PD(P,R) = |ψ(R)|2,∫
d3RD(P,R) = |φ(P)|2,



where φ(P) ≡
∫
d3R/(2π~)3/2 ψ(R) exp(−iP ·R/~). In other words, just as P(P,R) does,

appropriate integrations of D(P,R) can reproduce probability densities both in P and R

spaces.

(b) 5% Show that if the particle is free, the way that D(P,R) evolves is the same as that

of the classical distribution function P(P,R).

Ex 6 10% Quantum state tomography of qubit

Quantum state tomography is the process by which a quantum state is reconstructed

by using measurements on an ensemble of identical quantum states. Specifically, as the

quantum state can be represented by the density operator, constructing the density operator

is equivalent to do the quantum state tomography. Take the qubit as example, the density

operatior ρ can be generally expressed as ρ = 1
2
(1 + aσx + bσy + cσz). In most experiments,

what we can extract from the measured signal about the quantum state of a qubit is the

population in σz. Devise the experimental procedure for quantum state tomography of the

qubit.

Ex.7 10% Page 157, problem 7-5.

Ex.8 Generation of entangled photons

The propagation of light in a medium depends on the electromagnetic properties of the

medium. In a nonconducting and non-magnetic dielectric materials, the electromagnetic

field of the light induces oscillating electric dipoles for bound charges in the medium, which

in turn generate secondary waves. The secondary wave, when combined with the original

electric field ~E, yields the electric displacement ~D that accounts for effects of free and

bound charge within the medium. For homogeneous and isotropic dielectric material, we

have ~D = ε ~E with ε being the permittivity of the material and ~D = ε0 ~E + ~P , where ε0 is

the vacuum permittivity and ~P is the induced polarization density such that ~P = (ε− ε0) ~E.

In general medium, the propagation of light may become anisotropic. Assuming that the

medium is the same as its being specified in the beginning except for being electrically

anisotropic along one direction, the electric displacement ~D is related to the electric field ~E

by Dx = εoEx, Dy = εoEy, and Dz = εeEz, where x, y and z are three mutually-orthogonal

principal axes. As a result, the corresponding refraction indices for light ray with ~D lying

in xy plane and being along z direction are different and are denoted by no =
√
µ0εo and

ne =
√
µ0εe respectively. The material is known as the uniaxial medium.

(a) In an uniaxial medium, the propagation of the wave (specified by ~k) may explicitly



depend on the direction of ~k.

(i) 5% For simplicity, we shall first focus on the propagation in the xz plane. For a given

propagation direction of light wave, ~k = k(sin θ, 0, cos θ), find possible values of refraction

indices and the direction (termed as the optical axis) along which there is only one value of

refraction index.

(ii) 5% The polarization of the light, i.e., the direction for the electric field,can be classified

as either being perpendicular to the plane (termed as the ordinary light ray) or being in

the same plane formed by ~k and the optical axis (termed as extraordinary light ray). Find

the the corresponding polarization of the light for different refraction indices and indicate

which kind of the light ray it belongs to. Compute tanα, where α is the angle between ~E

and ~D.
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FIG. 1: Propagation of light from A to B through an interface between an isotropic medium 1 and

an anisotropic medium 2.

(b) 10% One of usage for optically anisotropic material is to generate entangled pho-

ton pairs. To generate entangled photons, we consider a nonlinear medium. In this

medium, in addition to the usual linear dependence of the polarization density on the elec-

tric field, ~P = (ε − ε0) ~E, there is a nonlinear contribution to the polarization given by

PNL
i =

∑
j

∑
k χ

(2)
ijkEjEk. Here i, j and k are the component indices (x, y or z) for ~P and ~E,

and χ
(2)
ijk is the second order nonlinear susceptibility of the medium and is a constant. The

presence of non-vanishing χ
(2)
ijk implies that during the propagation of a light wave, there is

a certain probability that the light wave can split into two light waves. In the following, we



shall investigate entanglement of the two splitted light waves.

Consider the splitting of a light wave with angular frequency ω and wavevector ~k into two

light waves with angular frequencies being ω1, ω2 and corresponding wavevectors being ~k1,

~k2 respectively. Assuming that ω, ω1 ≥ ω2, find all possible relations between that these

frequencies and wavevectors. These relations are known as the phase matching conditions.

By viewing light as composed by photons, explain the meaning of these relations at the level

of individual photon. What are the corresponding relations when a photon with frequency ω

and wavevector ~k is split into two photons with frequencies being ω1, ω2 and corresponding

wavevectors being ~k1, ~k2 respectively?

(c) 10% Consider splitting of light waves in an uniaxial medium. If we denote the ordinary

light ray by o and the extraordinary light ray by e. There are 8 possible ways for a light

wave to split: o → o + o, o → e + o, o → o + e, o → e + e, e → o + o, e → e + o,

e→ o + e, and e→ e + e. Assuming that both the refraction indices no and ne increase as

the frequency increases and considering the collinear case when ~k, ~k1, and ~k2 are along the

same direction, indicate which splittings are not possible.

(d) 15% pt In general, the phase matching conditions need to be solved numerically.

Suppose that for ne < no, the collinear phase-matching conditions for e→ e+o are realized

for an uniaxial medium with k = Kp, k1 = Ke, k2 = Ko, ω = Ωp, ω1 = Ωe, and ω2 = Ωo.

Here the directions of wavevectors ~k, ~k1 and ~k2 are all along the z′ direction as shown in

Fig. 1(a). x′ and y′ are the corresponding coordinate systems associated with the z′ axis,

the angle between the optical axis (OA) and z′ is θ, and OA lies in x′-z′ plane. Using the

same direction of incident ~k and ω = Ωp, the non-collinear splitting of the e light ray into

e + o can form two cones as shown in Fig. 1(b). Here ω1 = ω2 = Ω, k1 = k2, and the

refraction index for the e light ray is denoted generally as ne(ω, θ). In the plane that is

perpendicular to ~k (incident e light ray), two circles representing ~k1 (e light ray) and ~k2

(o light ray) intersect at points a and b with line ab being in parallel to y′-axis. Assuming

that all relevant wavevectors ~kα, specified by θα and φα indicated in Fig. 1(a), are close to

z′-axis, one can treat |(Ω− Ωe)/Ωe| � 1, the perpendicular components |~kα,⊥|/kα � 1 and

the difference of the angle |θα − θ| � 1. By considering the z′-component of ~kα and the

angle θα to the second order, O(k2
α,⊥) and O((θα − θ)2), one finds that the perpendicular

components ~k2,⊥ = (q′x, q
′
y) satisfy D(q′x−E)2 +Dq

′2
y = F . Evaluate D, E, and F in terms of

Ω, Ωe, Ωo, Ke, Ko, Ne(ω, θ) = 1
ne(Ωe,θ)

dne(Ωe,θ)
dθ

and the group velocities uo = dω2

dk2
and ue = dω1

dk1



for the o and e light rays. Estimate the angle between the axis of the cone and ~k and the

angle of the cone in terms of D, E, F , and Ke.
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FIG. 2: (a) Orientation of a general ~kα relative to the optical axis and the coordinate system x′,

y′, and z′. Here ~kα⊥ is the projection of ~kα is x′-y′ plane. (b) Non-collinear splitting of the e light

ray into e+ o that form two cones. Here ab is in parallel to y′-axis.

(d) 20 % Following problem (c), two split photons come out in directions that pass points

a and b are polarized in either x̂′ or ŷ′ directions. These two photons are the so-called entan-

gled photon pair such that when one photon that passes a (called a-photon) is polarized in

x̂′, the other one that passes b (called b-photon) will be polarized in ŷ′; or when a-photon is

polarized in ŷ′, b-photon will be polarized in x̂′. Experimentally, the entangled photon-pair

state can be prepared such that it is a superposition of the above two alternatives and can

be represented as 1√
2
(|x̂′a〉|ŷ′b〉+ |ŷ′a〉|x̂′b〉), where |x̂′a〉|ŷ′b〉 represents the state when a-photon

is polarized in x̂′ direction, b-photon is polarized in ŷ′ direction; similar meaning applies

to |ŷ′a〉|x̂′b〉. As shown in Fig. 2, suppose that we use two linear polarizers 1 and 2 that

make angles α and β with respect to x̂′ to perform the coincident measurement of the two

photons that pass a and b respectively. Let the probability for coincident finding a-photon

and b-photon by polarizers 1 and 2 be P (α, β), which is proportional to the product of light

intensities measured by polarizers 1 and 2. Let us denote α + π/2 and β + π/2 by α⊥ and

β⊥ respectively.

(i) By considering the total electric field projected by linear polarizers, find the probabilities

P (α, β), P (α, β⊥), P (α⊥, β), and P (α⊥, β⊥).



(ii) Let us assign σα = 1 when the polarizer 1 with the angle being α finds an a-

photon and assign σα = −1 when the polarizer 1 with the angle being α⊥ finds an a-

photon. Similarly, σβ = 1 or −1 is assigned when the polarizer 2 with the angle be-

ing β or β⊥ finds a b-photon. If E(α, β) denotes the average of σασβ, the quantity,

S ≡ |E(α, β) − E(α, β′)| + |E(α′, β) + E(α′, β′)|, has an important meaning. For classi-

cal theories of light, S ≤ 2. This is known as a variant form of the Bell’s inequality [the

Clauser, Horne, Shimony and Holt (CHSH) inequality]. Evaluate S for a special case when

α = π
4
, α′ = 0, β = −π

8
, β′ = π

8
.


