Principle and application of Quantum Technology Homework 2 Due: April 18, 2024

Ex. 1 10\%

Given a density operator $\hat{\rho}$, it may represent many different ensembles. As an example, consider $\hat{\rho}=\frac{3}{4}|0\rangle\langle 0|+\frac{1}{4}|1\rangle\langle 1| . \hat{\rho}$ can be re-written as $\hat{\rho}=\frac{1}{2}|a\rangle\langle a|+\frac{1}{2}|b\rangle\langle b|$ by suitable linear superpositions of $|0\rangle$ and $|1\rangle$ to form $|a\rangle$ and $|b\rangle$. Find $|a\rangle$ and $|b\rangle$ in terms of suitable linear superpositions of $|0\rangle$ and $|1\rangle$.
Ex. $2 \mathbf{1 0 \%}$ The Hadamard gate can be written as $H=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1|)$. Consider the n-qubit state $\left.\psi_{0}\right\rangle \equiv|000 \cdots 0\rangle$. Show that $H \otimes H \otimes \cdots \otimes H\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle$, where x is any integer between 0 and $2^{n}-1$ expressed in binary representation.

Ex. 3 10\% Page 99, problem 4-5.
Ex. $4 \mathbf{2 0 \%}$ Consider a two-state system characterized by the Hamiltonian

$$
\mathbf{H}=\Delta[2|1><1|-|2><2|+2(|1><2|+|2><1|)],
$$

where Δ is a real number with the dimension of energy. $\mid 1>$ and $\mid 2>$ are normalized and are also orthogonal to each other. Consider a collection of such two-state systems. Suppose at $t=0$, the percentage of systems in $|1\rangle$ is p_{0}, the remaining systems are all in the state of $|2\rangle$. Find the density matrix $\rho(t)$ for $t>0$.
Ex 5 Consider a harmonic oscillator characterized by the Hamiltonian $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$.
(a) $\mathbf{1 0 \%}$ For the nth eigenstate $|n\rangle$, find $\langle n| x^{4}|n\rangle$.
(b) $\mathbf{1 0 \%}$ Let $|0\rangle$ be the ground state. Show that

$$
\langle 0| e^{i k x}|0\rangle=\exp \left(-k^{2}\langle 0| x^{2}|0\rangle / 2\right) .
$$

