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Homework 3
Due: December 21, 2023

Ex.1 10% A thin nanowire of constant diameter is connected into a loop. The radius of this closed circular loop is
R = 10−7m (so it can be called a nanoloop). The loop contains one superconducting vortex. Find the magnitude of
the superfluid velocity vs in the wire. No external magnetic field is applied. Assume the wire forming the loop is
so thin that the magnetic field produced by the supercurrentis negligible. Comment on how vs would change if the
loop is deformed from the circular to some arbitrary shape, assuming that the length of the wire forming the loop
remains unchanged. Electric capacitance of the loop is assumed negligibly small and the system is in local equilibrium.

Ex.2 10%
In the construction of the solution of Ginzburg-Landau equation for the Abrikisiv lattice near Hc2, the solution takes
the form

ψL(x, y) =

∞∑
n=−∞

Cne
inkye−(x−xn)

2/(2ξ2), (1)

where xn = n~c/(e∗Hc2). Find the condition on Cn such that ψL describes a triangle lattice.

Ex.3 10%
The displacement field ~uα of a vortex lattice is defined as ~uα = ~rα − ~Rα, where ~rα (~Rα) is the real (ideal) position of
a flux line. Note that ~uα are two-dimensional vectors. Assume that the magnetic field is applied along z-axis, and
there is no pinning, then the thermal average of the mean displacement is given by

〈u2〉 =

∫
d|~u(r)|2e−δG(u)/kBT∫
du(r)e−δG(u)/kBT

, (2)

where δG(u) is the excess Gibbs free energy due to the elastic response to the distortion of the vortex lattice. The
elastic matrix φαβ (α, β = x, y) is given by

φαβ(k) = [C11(k)− C66]kαkβ + δαβ [C66k
2
⊥ + C44k

2
z ], ] (3)

where k2⊥ = k2x + k2y, and C11, C44, C66 are the compression, tilt, and shear moduli, respectively. From Eqs.(1) and
(2), show that

〈u2〉 =

∫
d3k

(2π)3

[
kBT

C66k2⊥ + C44k2z

]
+

[
kBT

C11k2⊥ + C44k2z

]
(4)

Ex.4 The complex conductivity σ(ω) of a superconductor can be generally expressed in terms of superfluid
density ρs and the frequency ω by the following formula

σ(ω) ∼ ρs
−iω + ε

, (5)

where ε → 0+, ρs ∼ ξ2−d in the critical regime, with d being the sample dimensionality, xi ∼ |T − TM (H)|−ν being
the vortex cpherence length, and ν being the static exponent. One also defines a characteristic relaxation time τ ∼ ξz,
where z is the dynamical exponent. TM (H) is the vortex lattice melting temperature at external field H and we
are are interested in the transport p[roperies neat TM . Let us consider the conductivity as a funciton of the applied
current density (J), H, and the frequency of applied currents (ω), i.e., σ = σ(x, y, u), where x = Jξd−1Φ0/(kBT ),
y = Hξd/Φ0, u = ωξz with Φ0 being the flux quantum.
(a) 10% Show that in the presence of a constant magnetic field (H), where Hc1 < H < Hc2, the electrical field E in
the limit of ω → 0 and T → TM (H) is given by

E(J, T ) = Jσ−1 ∼ Jξd−2−zF±(x), (6)

and that

E(J, T ) = J (z+1)/(d−1), T = TM (H), (7)
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where F± are the universal functions for T > T+
M and T < T−M , respectively.

(b) 5% For J → 0, and Hc1 < H � 1
2Hc2 (so that TM (H) → T−c ), show that the resistivity ρ ∼ σ−1 has the

following magnetic field dependence

ρ(H,T ) = ξd−2−zR±(y), (8)

and that ρ(H, t) ∼ H(z+2−d)/2, T → T−c . What is the functional form of R+(y) as y → 0?
(c) 5% In the linear resistivity regime, show that the conductivity at a constant magnegtic field has the following
frequency dependence

σ(ω, T ) ∼ ξ2−d+zS±(u), (9)

where S±(u) are the universal functions for T > T+
M and T < T−M , respectively. Show that σ(ω, T ) ∼ ω−(z+2−d)/z,

T → TM (H), and that S+(u)→ real constant and S−(u)→ 1/(−iu) for u→ 0.


