

Condensed Matter Physics (I): Homework 4

Due: November 27, 2025

Exercises in Ashcroft/Mermin

1-4, 1-5, 2-1, 30-7

Ex.1 25% The Landau Free energy is constructed as a polynomial of the order parameter \vec{M} , consistent with a given set of symmetry requirements. For instance, as shown in the class, if the system is isotropic, the free energy density can be expressed

$$f = A_0|\nabla \vec{M}|^2 + A_2|\vec{M}|^2 + A_4|\vec{M}|^4 + O(|\vec{M}|^6). \quad (1)$$

Construct f up to terms of fourth order in \vec{M} and second order in ∇ with the following symmetries:

- (a) Cubic symmetry: invariance under sign reversal and under interchange of any of the order parameter components. Assume that ∇ is independently spherically symmetric.
- (b) A system with two n -component order parameters \vec{M}_1, \vec{M}_2 , with independent spherical symmetry for each one and for ∇ .
- (c) Same as (b), but now \vec{M}_1, \vec{M}_2 , rotate together.
- (d) Same as (b), but now assume $n = d$, and $\nabla, \vec{M}_1, \vec{M}_2$, all rotate together.
- (e) 3-state Potts model: $\vec{M} = (M_x, M_y)$ has two components and f is invariant under 120° rotations. Assume that ∇ is independently spherically symmetric.

Ex.2 10% Consider n interstitial atoms in equilibrium with n vacancies in a crystal with N lattice points and N' possible interstitial positions. Show that the energy E to remove an atom from a lattice site to an interstitial position is given by

$$E = k_B T \ln \left[\frac{(N-n)(N'-n)}{n^2} \right]. \quad (2)$$

In the limit of $n \ll N, N'$, find n in terms of E .

Ex.3 20% Consider a system of two types of charge carriers in the Drude model. The two carriers have the same density n and opposite charges (e and $-e$), and their masses and relaxation rates are m_1, m_2 and τ_1 and τ_2 , respectively.

- (a) Find the magnetoresistance, $\Delta\rho = \rho(H) - \rho(0)$, where H is the magnetic field.
- (b) Calculate the Hall coefficient.

Ex.4 Consider free electrons of mass m in a thin film. The width of the thin film is d .

- (a) 10% Find the density of states $D(\epsilon)$ and sketch $D(\epsilon)$ versus ϵ .
- (b) 10% Find the specific heat due to electrons at low temperatures in the limit $d \rightarrow 0$.
- (c) 5% Sketch the specific heat due to electrons at low temperatures for finite d .

Ex.5 10% Consider free electrons of mass m in a wire. The cross section of the wire is $d \times d$. Sketch the density of states $D(\epsilon)$ versus ϵ .