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Quantum Mechanics (II): Homework 5
Due: May 27, 9 AM (hand-in box of Room 514 Physics Dept.), 2022

Ex. 1
(a) 10 If we assume that there exists a solution ψ0 to the time-independent Schrodinger equation such that ψ0 is real
and never vanishes in the whole domain, show that ψ0 is the ground state wavefunction. Hint: show that any other
solution has higher energy.
(b) Consider a particle of mass m in the double-well potential

V (x) =
1

2
mω2(|x| − a)2.

(i) 10 Let un(x) be the normalized eigenfunction for a harmonic potential centered at x = 0, 1
2mω

2x2. Let ψn(x) be
the variational trial wavefunction for the nth level of V (x)

ψn(x) = c1un(x− a) + c2un(x+ a),

where c1 and c2 are real parameters. By treating c1 and c2 as variational parameters, find the variational energies En
(there are two of them) in terms of the following integrals:

An =

∫ ∞
−∞

un(x− a)Ĥun(x− a),

Bn =

∫ ∞
−∞

un(x+ a)Ĥun(x− a),

Cn =

∫ ∞
−∞

un(x− a)un(x+ a),

where Ĥ = p2

2m + V (x). What are the corresponding forms of the variational eigenfunctions?

(ii) 10 Consider the n = 0 states. There are two energies: E±0 . For a much larger than the ground state width, show

that ∆E = E−0 −E
+
0 ≈ 2h̄ω

√
2V0

πh̄ω e
−2V0/h̄ω where V0 = mω2a2/2. This is known as tunneling splitting. Explain why?

Ex 2 20 Exercise 17.3.4.
Ex 3 Fine Structure of Hydrogen atoms
The Coulomb potential − e2/r does not account for all interactions between the electron and the proton. There
are so-called fine-structure corrections to this basic interaction. Two of them are relativistic in origin. One is the
correction to the kinetic energy p2/2m. The other is the spin-orbit interaction. Consider these two interactions as
perturbations to H = p2/2m− e2/r.
(a) 5 Find the leading correction to the kinetic energy in terms of p (≡ ∆T ).

(b) 10 Using Ex 2, calculate the energy shifts to first order in ∆T and show that they are O(α
2
), where α is the

fine-structure constant.
(c) 10 The spin-orbit interaction is given by

V =
e2

2m2c2r3
S · L

Calculate the energy shifts to first order in V and show that they are also O(α
2
).

(d) 10 In addition to the above corrections, another possible correction is due to finite size of nucleus. Now consider
the correction only due to finite size of nucleus by assuming that charge is uniformly distributed over a sphere of
radius R. Let Bohr radius be a0 and we shall assume R� a0. Find the correction of the ground state energy of the
hydrogen atom to leading order of R/a0.
Ex 4 10 Show that the Green’s function is given by

G(r, r′) ≡ 〈 r | 1

E − Ĥ0 ± iε
| r′ 〉 = −2m

h̄2

e±ik|r−r
′|

4π |r− r′|

where E = h̄2k2/2m and Ĥ0 = p̂2/2m (finish the contour integrals).
Ex 5 10 Exercise 17.2.4.(1)
Ex 6 10 Exercise 17.2.1.(1)
Ex 7 10 Exercise 16.1.2.
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Ex 8 15 Exercise 17.3.2.
Ex 9 15 An operator Λ0 has non-degenerate eigenvalues and eigenkets λn and |n〉 such that

Λ0|n〉 = λn|n〉.

Consider an operator function F (Λ0 + εΛ1) with ε� 1, show that

〈n|F (Λ0 + εΛ1)|m〉 = δnmF (λn) + ε 〈n|Λ1|m〉
F (λn)− F (λm)

λn − λm
+O(ε2).

Ex. 10 10 Prove the following equality

P
1

x− x0
=

1

x− x0 ± ε
± iπδ(x− x0).

Ex. 11 10 The Hohenberg-Kohn theorem A widely used method in obtaining the band structure in the solid
state physics is the density functional theory. This theory is based on the Hohenberg-Kohn theorem which says that
given a Hamiltonian

Ĥ =
p̂2

2m
+ V(r),

the density distribution of the ground state n(r) ≡ ψ∗0(r)ψ0(r) uniquely determines the potential V(r) and ψ0(r). It
therefore appears that one does not need to know the phase of ψ0. To prove it, one assumes that two different sets
V(r), ψ0(r) and V′(r) and ψ′0(r) gives the same density n(r). Show that this leads to a contradiction.
Ex. 12 The Van der Walls interactions Consider the interaction of two atoms in a vacuum. Let us fix the centers
of atoms at r = 0 and R. For simplicity, we shall assume that each atom has only one electron, e.g., the Hydrogen
atoms (but in principle, the Van der Walls interaction exists between other atoms in ground state)
(a) 5 For fixed centers of atoms (r = 0 and R), if R < c/ω where ω is a typical atomic frequency, we can neglect
retarded effect. If the we denote the positions of the electrons by r1 and r2, find the lowest order terms of the
Hamiltonian for the two electrons with mass m in the limit r1, r2 � R.
(b) 10 Treat the part of the potential in (a) that depends on R as a perturbation, show that to the second order,
the shift for the ground state energy (= −2× 13.6 eV for two H atoms before perturbation) of nonpolar atoms (i.e.,
atoms with spherical symmetry) ∆E(R) is always negative and decays as 1/R6 . This interaction is known as the
Van der Walls interaction.
(c) 5 Explain the dependence 1/R6 in terms of the dipole-dipole interaction.
(d) 10 Show that for H atoms,

∆E(R) ≥ −8e2a5
0

R6
,

where a0 is the Bohr radius.
Ex. 13 Canonical transformation Consider a Hamiltonian H = H0+V and assume that to every eigenket |n0〉 of
H0 with eigenvalue E0

n, there is an eigenket |n〉 of H with eigenvalue En. Sometimes, it is more convenient to eliminate
(hide) V in the linear level by the so-called canonical transformation

H̄ = e
S

He−S ,

where S is some operator that needs to be found such that H̄ = H0 + O(V2). Usually S can be chosen to be anti-
Hermitian: S† = −S.
(a) 10 Show that if S satisfies [S,H0] + V = 0, H̄ = H0 +O(V2) can be satisfied. More specifically, show that now

H̄ = H0 +
1

2
[S,V] +

1

3
[S, [S,V]] + ...+

n

(n+ 1)!
[S, [S, [S, ..., [S,V]]]] + ....

(b) 5 If we solve H̄ perturbatively, we find that to the zeroth order of V, the eigenket |n̄〉 = |n0〉 and Ēn = E0
n. The

effect of V is entirely hidden. Show that if S is anti-Hermitian, the eigenvalues will be the same if one sums to all
orders in V.
(c) 5 Verify that the lowest correction to E0

n in Ēn is the same as the 2nd order correction to E0
n in En.

(d) 10 Do ex. 17.2.7. to find Ω (our S is the same as Ω in that problem).
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Ex. 14 A hydrogen atom is subject to a uniform electric field E. We shall assume that the electric field is sufficiently
weak and can thus be treated as a perturbation.
(a)10 Calculate the energy eigenvalue corrections for the first excited level (n = 2).
(b) 10 Find an expression for the induced electric dipole moment of the ground state to the lowest non-trivial order.
Estimate an upper bound for the polarizability of the atom.
Ex. 15 (a) 5 Consider a system described by the Hamiltonian

H =
p2

2m
+
mω2

2α
(1− e−αx

2

).

Find the ground state energy to O(α).
(b) 10 A spin-1/2 particle of mass m moves in a spherical harmonic oscillator potential U = 1/2mω2r2 and is subject

to the interaction V = λ~σ · ~r. Here ~S = h̄~σ/2 is the spin operator of the particle. Find the shift of the ground state
energy to O(λ2).
Ex. 16 10 Consider a particle of mass m confined in a two dimensional box, locating in the range −a/2 ≤ x ≤ a/2
and −a/2 ≤ y ≤ a/2. Inside the box, the potential that acts on the particle is V (x, y) = −λxy with λ > 0. Use the
perturbation theory to calculate the energy shifts for the degenerate first excited states to first order of λ. What are
the first order wave functions?


