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Quantum Mechanics (II): Homework 3
Due: April 13, 2022

Ex. 1 10 Consider an electron in an atom or molecule such that it can be described by

H =
1

2m

(
p− e

c
A
)2

+ V (r).

where V (r) is the effective potential due to nucleus and other electrons. In a uniform magnetic field B = (0, 0, B), we
have seen that by using the symmetry gauge, i.e., A = 1

2B× r,

H =
1

2m
p2 + V (r)− µL ·B+O(B2r2)

≡ HS+O(B2r2),

where µL is the orbital magnetic moment. However, if we adopt the Landau gauge, i.e., A = (0, Bx, 0), we get

H =
1

2m
p2 + V (r) +

eB

mc
xpy+O(B2r2)

≡ HL+O(B2r2).

HL does not even look like HS . Show that to O(B2r2), for the same eigenvalue, the eigenstates φL to HL and φS to
HS differ by a phase

φL = φS exp (−iϕ) .

Therefore, they are equivalent. Find the phase ϕ.
Ex.2 Equations of motions
(a) 5 Suppose that a particle is governed by the Hamiltonian : H = p2/2m+ V (r). Show that

d < L >

dt
=< τ >

where τ is the torque r× F = −r×∇V, and L is the orbital angular momentum.
(b) 10 Suppose that the particle has a magnetic dipole moment µ = gµbJ, where g is the g-factor, µb = eh̄/2m is
the Bohr magneton, and J is the total angular momentum. If the particle is placed in a constant magnetic field B,
H = −µ ·B. Show that

d < J >

dt
= gµb < J > ×B,

i.e., 〈J〉 is doing Larmor precessing with angular frequency ω = gµbB.
Ex.3 10 Exercise 12.4.4. (Note that U [R] is D [R] in our notations).
Ex.4 10 A rigid rotator is in a uniform magnetic field along z direction so that the Hamiltonian is

H =
L2

2I
+ ω0Lz,

where ω0 is a constant. If the wavefunction of the rotator at t = 0 is

〈θ, φ|ψ(0)〉 =

√
3

4π
sin θ sinφ,

find 〈θ, φ|ψ(t)〉.
Ex.5 30 (a) Exercise 12.5.13 (b) Exercise 12.6.9. (c) Derive Eq.(12.6.37)
Ex.6 10 A fundamental theorem in Linear Algebra is the theorem of Hamilton-Cayley, which says that given a n×n
matrix A, there exists a polynomial f(t) = an t

n + an−1 t
n−1 + · · ·+ a0 such that

f(A) = 0.

This polynomial is given by

f(t) = Det (tI −A) ,
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of which roots are the eigenvalues of A. Use this theorem to find exp(A), where A is given by(
1 3
0 −1

)
.

Ex.7 10 Exercise 14.5.4.
Ex.8 (a) 10 As we have shown in Ex 3, the definition of a vector operator V in Quantum Mechanics is defined by
[Vα, Jβ ] = ih̄εαβγVγ . Under a rotation, this vector operator transforms according to

exp

(
iJ · nφ
h̄

)
Vi exp

(
− iJ · nφ

h̄

)
.

Consider a rotation about z-axis through the angle φ, show that

exp

(
iJ · nφ
h̄

)
Vx exp

(
− iJ · nφ

h̄

)
= Vx cosφ− Vy sinφ

exp

(
iJ · nφ
h̄

)
Vy exp

(
− iJ · nφ

h̄

)
= Vx sinφ+ Vy cosφ

exp

(
iJ · nφ
h̄

)
Vz exp

(
− iJ · nφ

h̄

)
= Vz

(b) 10 Consider a rotation R(φ,θ,ψ), where φ,θ,ψ are three Euler angles in Sakurai’s notations. The angle θ describes
the rotation with respect to the intermediate y-axis: η, and is given by Rη(θ) = Rz(φ)Ry(θ)R−1

z (φ). Using the result
of (a), express Dη(θ) in the form exp(−iA/h̄). Find A in terms of Jx, Jy, and Jz. From here, find Jη in terms of Jx,
Jy, and Jz, explain the result.
Ex.9 (a) 20 Exercise 14.4.3.
(b) 15 Neutrinos are neutral particles that come in three kinds, namely νe, νµ and ντ . Until recently they were
considered to be massless. In this problem, we shall show that the observation of neutrino oscillations, i.e. transfor-
mation between νµ and νe, is a proof of their massiveness.
(i) Consider for simplicity two neutrino species only, namely νe and νµ. We shall adopt a similar view as isospin
and try to view them as two states of the same particle. Ignoring the spatial degrees of freedom and treating the
momentum as a parameter p (a number), then similar to the spin-1/2 system, the Hamiltonian is a 2× 2 matrix with

eigenvetor ν1 and ν2 with the corresponding energies being E1,2 =
√
p2c2 +m2

1,2c
4 ≈ pc + m2

1,2c
3/2p. In general,

there is no reason to identify νe and νµ as ν1 and ν2. Instead, let us assume

νe = cos θν1 + sin θν2

νµ = − sin θν1 + cos θν2

where θ is a parameter,termed as mixing angle. Suppose that at t = 0, one produces a neutrino of momentum p of
the kind νe. Find the probability of for this neutrino to be detected as νµ at a later time t (in terms of E1, E2 and θ).
(ii) Suppose that the speed of neutrinos can be approximated by the speed of light c. If pc = 4 MeV, one finds that
the neutrino oscillates back and forth between νe and νµ in the length 100km. Estimate the mass difference (∆m2)c4

with ∆m2 ≡ m2
1 −m2

2.
Ex 10 10 Consider j = 1. Find matrices (3×3) for exp (−iJxα/h̄) and exp (−iJyα/h̄).
Ex.11 10 Exercise 14.3.5.
Ex.12 10 Exercise 14.3.8.
Ex.13 5 The normalized wave function of an electron in a central potential is given by

ψnlm(r, t) = Rnl(r)Y
m
l (θ, φ) exp(−iEnt/h̄).

Show that the probability current for this electron is given by

j = φ̂
|ψnlm|2mh̄
me r sin θ

where me is the mass of the electron.
Ex.14 One of the classic problems in classical mechanics is to solve the motion for a rotating top. The rotation energy
can be rewritten as

H =
1

2

(
J2
a

Ia
+

J2
b

Ib
+

J2
c

Ic

)
,
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where J is the angular momentum in the body frame and (Ia, Ib, Ic) are the principal moments of inertia. But how do

we generalize the angular momentum in the body frame in quantum mechanics? An obvious way is to define Ĵa ≡ Ĵ · â,

Ĵb ≡ Ĵ · b̂, and Ĵc ≡ Ĵ · ĉ, where Ĵ is the angular momentum operator in the fixed frame, while â, b̂, and ĉ are three

unit vectors along the principal axes. The tricky point, however, is that â, b̂, and ĉ also depend on how J changes in
classical mechanics, i.e., they are not independent from J. How do we deal with this in quantum mechanics? This is
where we can apply the concept used in Ex. 8. In quantum mechanics, all the above consideration says is that we

can not treat â, b̂, and ĉ as constant vectors but have to treat them as vector operators.
(a) 10 Show that

(Ĵ · û)(Ĵ · v̂)− (Ĵ · v̂)(Ĵ · û) = −ih̄ Ĵ · û× v̂

where û and v̂ are two commuting vector operators.
(b) 10 From (a), show that [Ĵα, Ĵβ ] = −ih̄ εαβγ Ĵγ , where α, β, and γ represent a, b, or c. Note that it differs from
the usual commutation relation by a minus sign. Give a physical argument for the minus sign.
(c) 5 Find the equation of motion for Ĵα in the Heisenberg picture.
Ex.15 SU(2) matrices in the Euler description As mentioned in the class, any 2×2 SU(2) matrix U can be
considered as a rotation in the spin space. In particular, we can consider U as a rotational matrix in the Euler
description so that

U = exp(− i
h̄
φSz) exp(− i

h̄
θSy) exp(− i

h̄
αSz).

(a) 5 Show that U rotates the spin states along the z direction (|±〉) to the direction n = (θ, φ) (|n,±〉). If we
define z1 = exp(−iα/2) exp(−iφ/2) cos(θ/2) and z2 = exp(−iα/2) exp(iφ/2) sin(θ/2), then |n,+〉 = (z1, z2) and
|n,−〉 = (−z∗2 , z∗1).
(b) 10 Show that z∗α

−→σ αβzβ = (sin θ cosφ, sin θ sinφ, cos θ), where −→σ is the Pauli matrix vector and α and β are either
1 or 2.
Ex.16 10 Use the method of Schwinger bosons to find the rotation matrix d(β) = exp(− i

h̄Jyβ) for j = 1. Compare
your result with the one obtained previously using the matrix representation of Jy.

Ex.17 10 Consider an electron incident from x = −∞ to the region x ≥ 0 with a unform magnetic field ~B =

(B sin θ, 0, B cos θ). Here θ is the angle between ~B and z axisand B is the magnitude of ~B. Except for the presence of
~B in x ≥ 0, the electron is free. Suppose that the incident electron is in the spin up (toward +z) state with incident
momentum being along x-axis and energy E. If the incident energy is in the range 0 < E < µbB with µb being the
Bohr magneton, find the transition probability that the electron can go into the region x ≥ 0. (Assuming that the
gyromagnetic ratio for the spin of the electron is 2.)

Ex. 18 15 Let djmm′(β) = 〈jm|e− i
h̄Jyβ |jm′〉 be the rotation matrix. Calculate the following quantities: (i)∑j

m=−jm|d
j
mm′(β)|2 and (ii)

∑j
m=−jm

2|djmm′(β)|2 in terms of β, j, and m′.
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Bonus problems (+1): Spin coherent states
Based on what we learned for the coherent states of the harmonic oscillator, we know that the salient point of coherent
states is that one can replace the operators by its eigenvalues. Specifically, we have

â |λ〉 = λ |λ〉, or equivalently, 〈λ| â |λ〉 = λ ,

where |λ〉 is a coherent state. Similarly, one defines the coherent states |Ω〉 for the spin operator by

〈Ω|S |Ω〉 = h̄ sΩ,

where Ω is a unit vector specifying the direction Ω ≡ (sin θ cosφ, sin θ sinφ, cos θ) and S is the spin operator with
eigenvalue s (which is not necessary 1/2). In other words, using the coherent states, one can replace the operator S
by h̄sΩ just as if the spins are classical vectors.
(a) The state |Ω〉 may be obtained by applying a rotation to the state |s, s〉. From this fact, show that

|Ω〉 =
(uâ†+ + υâ†−)2s√

(2s)!
|0〉,

where â†+ and â†− are the creation operators defined in the Schwinger model of the angular momentum, u =
cos(θ/2) exp(−iφ/2) and υ = sin(θ/2) exp(iφ/2). From this result, show that

〈Ω2|Ω1〉 = eis(φ2−φ1)

(
cos

θ2

2
cos

θ1

2
+ ei(φ1−φ2) sin

θ2

2
sin

θ1

2

)2s

.

(b) If we define dΩ = sin θ dθ dφ, show that

2s+ 1

4π

∫
dΩ |Ω〉〈Ω| = 1,

(s+ 1)(2s+ 1)

4π

∫
dΩ Ω |Ω〉〈Ω| = S.

(c) Consider the time evolution of a spin characterized by a Hamiltonian Ĥ = Ĥ(S). For example, Ĥ = αS ·B. Show
that the path integral for the evolution operator of this system can be written as

〈Ωf |Û(t)|Ωi〉 =

∫
DΩ exp

{
i

∫ tf

ti

[
s cos θ

dφ

dt
− H(Ω)

h̄

]
dt

}
,

where as usual,
∫
DΩ ≡ limN→∞ ( 2s+1

4π )N
∫
dΩN

∫
dΩN−1 · · ·

∫
dΩ1, which represents summing over all possible spin

orientations.
(d) The first term in (c) is new and known as the Hoft term. To understand its physical meaning, let us rewrite it as∫

dφ cosθ,

and consider a special case when φ(tf ) = φ(ti). On a unit sphere, the spin orientation traces out a closed curve. Show
that this term is equal to 2π− the cap area bounded by this closed curve (See fig. 1). Therefore, this term measures
the area the spin traces out on a unit sphere.


