Quantum Mechanics (I): Homework 2 Due: October 20, 9AM (hand-in box of Room 514 Physics Dept.), 2021

Ex.1 10 Page 54, ex 1.8.12
Ex.2 10 Page 30, ex 1.7.1 (1) and (2)
Ex.3 (a) 10

The exponential of an operator \hat{A} is defined by

 $\exp(\hat{A}) = I + \frac{\hat{A}}{1!} + \frac{\hat{A}^2}{2!} + \dots + \frac{\hat{A}^n}{n!} + \dots$

Assuming $[\hat{A}, \hat{B}] = c$, where c is a constant, verify, to $O(\lambda^2)$,

$$\exp(\lambda \hat{A}) \exp(\lambda \hat{B}) = \exp \lambda (\hat{A} + \hat{B}) \exp(\lambda^2 c/2).$$

Therefore, when \hat{A} and \hat{B} are commute, $\exp \hat{A} \exp \hat{B} = \exp(\hat{A} + \hat{B})$. (b) 10 In general, when $[\hat{A}, \hat{B}]$ does not vanish and is not a constant, show that the following Feynman's identity is correct

$$\exp(\hat{A} + \hat{B}) = T_{\lambda} \exp\left[\int_{0}^{1} d\lambda e^{\lambda \hat{B}} \hat{A} e^{-\lambda \hat{B}}\right] \exp(\hat{B}),$$

where similiar to anti time-ordering, T_λ orders larger λ to the right.

Ex.4 Suppose that the wavefunction of a free particle at t = 0 is given by $\psi(x, 0) = (\pi \Delta^2)^{-1/4} \exp(-x^2/2\Delta^2)$. (a) **5** Derive $\psi(x, t)$ for t > 0.

(b) 5 Verify that the $\psi(x, t)$ you obtain satisfies $\langle \psi | \psi \rangle = 1$ for t > 0.

(c) **5** Find the momentum uncertainty $\Delta p(t)$ for t > 0.

Ex.5 10 Page 163, ex 5.2.1

Ex.6 10 Page 163, ex 5.2.2

Ex.7 10 Page 167, ex 5.3.4

Ex 8 10 Suppose $\{A, B\} \equiv AB + BA = 0$, show that $A \exp(-B) = \exp(B) A$.

Ex.9 The system described by the Hamiltonian H_0 has just two orthonormal energy eigenstates, $|1\rangle$ and $|2\rangle$. The two eigenstates have the same eigenvalues, E_0 . Now suppose the Hamiltonian for the system is changed by the addition of the term V, giving $H = H_0 + V$. The matrix elements of V are

$$\langle 1|V|1\rangle = 0, \ \langle 1|V|2\rangle = V_{12}, \ \langle 2|V|2\rangle = 0.$$

(a) 5 Write out H in matrix-product form. (b) 10 Find the new energy eigenvalues and eigenkets (in terms of $|1\rangle$ and $|2\rangle$).

(c) 15 Now suppose that instead of being governed by H, the system is governed by $\hat{H'} = a|1\rangle\langle 1| + b|1\rangle\langle 2| + c|2\rangle\langle 1| + d|2\rangle\langle 2|$. Here $\langle 1|1\rangle = \langle 2|2\rangle = 1$ and $\langle 1|2\rangle = \chi$. Show that the eigenvalues λ of $\hat{H'}$ satisfy

$$\begin{vmatrix} a + b\chi^* + c\chi + d|\chi|^2 - \lambda & \sqrt{1 - |\chi|^2}(b + d\chi) \\ \sqrt{1 - |\chi|^2}(c + d\chi^*) & d(1 - |\chi|^2) - \lambda \end{vmatrix} = 0.$$

Why is the equation for λ different from the one that determines for the eigenvalues for (b)?

(d) 5 For problem (c), if one denotes $\hat{H}'|1\rangle = H'_{11}|1\rangle + H'_{21}|2\rangle$ and $\hat{H}'|2\rangle = H'_{12}|1\rangle + H'_{22}|2\rangle$, show that the computation of eigenvalues to \hat{H}' follows the usual way of solving eigenvalues for matrices. That is, if one denotes the eigenket by $\alpha|1\rangle + \beta|2\rangle$, show that

$$\begin{pmatrix} H'_{11} & H'_{12} \\ H'_{21} & H'_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

hence λ satisfies

$$\begin{vmatrix} H_{11}' - \lambda & H_{12}' \\ H_{21}' & H_{22}' - \lambda \end{vmatrix} = 0.$$

Ex.10(a) 10 Verify that the operator

$$\mathrm{T}\left[e^{-i/\hbar\int_{0}^{t}dt\,\hat{\mathrm{H}}(t)\cdot}\right]$$

is a solution to the operator differential equation

$$i\hbar \frac{d}{dt}\hat{\mathbf{U}}(t,0) = \hat{\mathbf{H}}(t)\hat{\mathbf{U}}(t,0),$$

where $T[\cdots]$ is the time-ordered product.

(b) 10 Under certain electromagnetic interaction, the Hamiltonian of an electron is given by $\hat{H}(t) = \hat{p}^2/2m + \lambda(\hat{x}\cos\omega t + \hat{p}\sin\omega t)$. Using the time-ordered product expression of $\hat{U}(t,0)$, find $\hat{U}(T,0)$ accurately to $O(\hat{H}^3)$ (i.e., neglect $O(\hat{H}^3)$), where $T = 2\pi/\omega$.

Ex.11 Consider an operator \hat{A} of which $\langle x|\hat{A}|x'\rangle = \hat{A}(x)\delta(x-x')$, where $\hat{A}(x)$ is the corresponding operator acting on $\delta(x-x')$. For instance, if $\hat{A} = \hat{p}$, $\hat{A}(x) = -i\hbar\partial/\partial x$. Similarly, for \hat{A}^{\dagger} , we can also write $\langle x|\hat{A}^{\dagger}|x'\rangle = \hat{A}^{\dagger}(x)\delta(x-x')$. (a) 5 Show that the relation $\langle \phi|\hat{A}^{\dagger}|\psi\rangle = \langle \psi|\hat{A}|\varphi\rangle^*$ reduces to $\int dx\phi^*(x)[\hat{A}^{\dagger}\psi(x)] = \int dx\psi(x)[\hat{A}^*\phi^*(x)]$.

(b) 10 Nonlocal potential In the usual Schrödinger equation, the potential \hat{V} is *local* in the sense that $\langle x|\hat{V}|x'\rangle = V(x)\delta(x-x')$, i.e., \hat{V} is diagonal in "x-basis". As a result, $\psi(x,t)$ does not depend *explicitly* on $\psi(x',t)$ at other position x'. Suppose now that the potential is nonlocal, i.e., $\langle x|\hat{V}|x'\rangle = V(x,x')$, where $V(x,x') \neq 0$ when $x \neq x'$. What is the corresponding Schrödinger equation in "x-basis" ?

Ex.12 5 $\hat{\mathbf{P}} = |i\rangle\langle i|$ is a projection operator that projects any state to the space spanned by $|i\rangle$. Show that $g^{\hat{\mathbf{P}}} = 1 - (1 - g)\hat{\mathbf{P}}$ where g is a real number.

Ex.13 Consider a quatum system whose Hilbert space is two-dimensional. The system is usually termed as a two-level system.

(a) 10 Show that in general, the density matrix $\hat{\rho}$ is characterized by three real numbers $(b_x, b_y \text{ and } b_z)$ and can be written in the form $\hat{\rho} = \frac{1}{2} \left(I + \vec{b} \cdot \vec{\sigma} \right)$ with $\vec{b} \cdot \vec{\sigma} = b_x \sigma_x + b_y \sigma_y + b_z \sigma_z$. Here I, σ_x, σ_y and σ_z are given by

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(b) 5 Find the condition for \vec{b} so that the 2×2 matrix, $\frac{1}{2} \left(I + \vec{b} \cdot \vec{\sigma} \right)$, is indeed a density matrix. What is the condition in terms of \vec{b} when $\hat{\rho}$ describes a pure state?

Ex.14 10 As we know, the probability current density in the Schrödinger equation is given by

$$J(x) = \frac{i\hbar}{2m} \left[\Psi(x) \frac{\partial}{\partial x} \Psi^*(x) - \Psi^*(x) \frac{\partial}{\partial x} \Psi(x) \right].$$

Construct the current density operator $\hat{J}(x)$ in terms of \hat{x} and \hat{p} such that $\langle \Psi | \hat{J}(x) | \Psi \rangle = J(x)$. Note that the x in $\hat{J}(x)$ is a parameter, not an operator.