Quantum Mechanics (I): Homework 2

Due: October 20, 9AM (hand-in box of Room 514 Physics Dept.), 2021

Ex. 110 Page 54, ex 1.8.12
Ex. 210 Page 30, ex 1.7.1 (1) and (2)
Ex. 3 (a) 10
The exponential of an operator \hat{A} is defined by

$$
\exp (\hat{A})=I+\frac{\hat{A}}{1!}+\frac{\hat{A}^{2}}{2!}+\cdots+\frac{\hat{A}^{n}}{n!}+\cdots
$$

Assuming $[\hat{A}, \hat{B}]=c$, where c is a constant, verify, to $O\left(\lambda^{2}\right)$,

$$
\exp (\lambda \hat{A}) \exp (\lambda \hat{B})=\exp \lambda(\hat{A}+\hat{B}) \exp \left(\lambda^{2} c / 2\right)
$$

Therefore, when \hat{A} and \hat{B} are commute, $\exp \hat{A} \exp \hat{B}=\exp (\hat{A}+\hat{B})$.
(b) 10 In general, when $[\hat{A}, \hat{B}]$ does not vanish and is not a constant, show that the following Feynman's identity is correct

$$
\exp (\hat{A}+\hat{B})=T_{\lambda} \exp \left[\int_{0}^{1} d \lambda e^{\lambda \hat{B}} \hat{A} e^{-\lambda \hat{B}}\right] \exp (\hat{B})
$$

where similiar to anti time-ordering, T_{λ} orders larger λ to the right.
Ex. 4 Suppose that the wavefunction of a free particle at $t=0$ is given by $\psi(x, 0)=\left(\pi \Delta^{2}\right)^{-1 / 4} \exp \left(-x^{2} / 2 \Delta^{2}\right)$.
(a) 5 Derive $\psi(x, t)$ for $t>0$.
(b) 5 Verify that the $\psi(x, t)$ you obtain satisfies $\langle\psi \mid \psi\rangle=1$ for $t>0$.
(c) 5 Find the momentum uncertainty $\Delta p(t)$ for $t>0$.

Ex. 510 Page 163, ex 5.2.1
Ex. 610 Page 163, ex 5.2.2
Ex. 710 Page 167, ex 5.3.4
Ex 810 Suppose $\{A, B\} \equiv A B+B A=0$, show that $A \exp (-B)=\exp (B) A$.
Ex. 9 The system described by the Hamiltonian H_{0} has just two orthonormal energy eigenstates, $\mid 1>$ and $\mid 2>$. The two eigenstates have the same eigenvalues, E_{0}. Now suppose the Hamiltonian for the system is changed by the addition of the term V, giving $H=H_{0}+V$. The matrix elements of V are

$$
\langle 1| V|1\rangle=0, \quad\langle 1| V|2\rangle=V_{12}, \quad\langle 2| V|2\rangle=0 .
$$

(a) 5 Write out H in matrix-product form. (b) 10 Find the new energy eigenvalues and eigenkets (in terms of $\mid 1>$ and $\mid 2>)$.
(c) 15 Now suppose that instead of being governed by H, the system is governed by $\hat{H}^{\prime}=a|1\rangle\langle 1|+b|1\rangle\langle 2|+c|2\rangle\langle 1|+$ $d|2\rangle\langle 2|$. Here $\langle 1 \mid 1\rangle=\langle 2 \mid 2\rangle=1$ and $\langle 1 \mid 2\rangle=\chi$. Show that the eigenvalues λ of \hat{H}^{\prime} satisfy

$$
\left|\begin{array}{cc}
a+b \chi^{*}+c \chi+d|\chi|^{2}-\lambda & \sqrt{1-|\chi|^{2}}(b+d \chi) \\
\sqrt{1-|\chi|^{2}}\left(c+d \chi^{*}\right) & d\left(1-|\chi|^{2}\right)-\lambda
\end{array}\right|=0
$$

Why is the equation for λ different from the one that determines for the eigenvalues for (b)?
(d) 5 For problem (c), if one denotes $\hat{\mathrm{H}}^{\prime}|1\rangle=H_{11}^{\prime}|1\rangle+H_{21}^{\prime}|2\rangle$ and $\hat{\mathrm{H}}^{\prime}|2\rangle=H_{12}^{\prime}|1\rangle+H_{22}^{\prime}|2\rangle$, show that the computation of eigenvalues to \hat{H}^{\prime} follows the usual way of solving eigenvalues for matrices. That is, if one denotes the eigenket by $\alpha|1\rangle+\beta|2\rangle$, show that

$$
\left(\begin{array}{ll}
H_{11}^{\prime} & H_{12}^{\prime} \\
H_{21}^{\prime} & H_{22}^{\prime}
\end{array}\right)\binom{\alpha}{\beta}=\lambda\binom{\alpha}{\beta},
$$

hence λ satisfies

$$
\left|\begin{array}{cc}
H_{11}^{\prime}-\lambda & H_{12}^{\prime} \\
H_{21}^{\prime} & H_{22}^{\prime}-\lambda
\end{array}\right|=0
$$

Ex. 10
(a) $\mathbf{1 0}$ Verify that the operator

$$
\mathrm{T}\left[e^{-i / \hbar \int_{0}^{t} d t \hat{\mathrm{H}}(t)}\right]
$$

is a solution to the operator differential equation

$$
i \hbar \frac{d}{d t} \hat{\mathrm{U}}(t, 0)=\hat{\mathrm{H}}(t) \hat{\mathrm{U}}(t, 0)
$$

where $\mathrm{T}[\cdots]$ is the time-ordered product.
(b) 10 Under certain electromagnetic interaction, the Hamiltonian of an electron is given by $\hat{H}(t)=\hat{p}^{2} / 2 m+$ $\lambda(\hat{x} \cos \omega t+\hat{p} \sin \omega t)$. Using the time-ordered product expression of $\hat{U}(t, 0)$, find $\hat{U}(T, 0)$ accurately to $O\left(\hat{H}^{3}\right)$ (i.e., neglect $O\left(\hat{H}^{3}\right)$), where $T=2 \pi / \omega$.
Ex. 11 Consider an operator $\hat{\mathbf{A}}$ of which $\langle x| \hat{\mathrm{A}}\left|x^{\prime}\right\rangle=\hat{\mathbf{A}}(x) \delta\left(x-x^{\prime}\right)$, where $\hat{\mathbf{A}}(x)$ is the corresponding operator acting on $\delta\left(x-x^{\prime}\right)$. For instance, if $\hat{\mathrm{A}}=\hat{\mathrm{p}}, \hat{\mathbf{A}}(x)=-i \hbar \partial / \partial x$. Similarly, for $\hat{\mathrm{A}}^{\dagger}$, we can also write $\langle x| \hat{\mathrm{A}}^{\dagger}\left|x^{\prime}\right\rangle=\hat{\mathbf{A}}^{\dagger}(x) \delta\left(x-x^{\prime}\right)$.
(a) 5 Show that the relation $\langle\phi| \hat{\mathrm{A}}^{\dagger}|\psi\rangle=\langle\psi| \hat{\mathbf{A}}|\varphi\rangle^{*}$ reduces to $\int d x \phi^{*}(x)\left[\hat{\mathbf{A}}^{\dagger} \psi(x)\right]=\int d x \psi(x)\left[\hat{\mathbf{A}}^{*} \phi^{*}(x)\right]$.
(b) 10 Nonlocal potential In the usual Schrödinger equation, the potential $\hat{\mathrm{V}}$ is local in the sense that $\langle x| \hat{\mathrm{V}}\left|x^{\prime}\right\rangle=$ $V(x) \delta\left(x-x^{\prime}\right)$, i.e., $\hat{\mathrm{V}}$ is diagonal in "x-basis". As a result, $\psi(x, t)$ does not depend explicitly on $\psi\left(x^{\prime}, t\right)$ at other position x^{\prime}. Suppose now that the potential is nonlocal, i.e., $\langle x| \hat{\mathrm{V}}\left|x^{\prime}\right\rangle=V\left(x, x^{\prime}\right)$, where $V\left(x, x^{\prime}\right) \neq 0$ when $x \neq x^{\prime}$. What is the corresponding Schrödinger equation in "x-basis"?
Ex. $125 \hat{\mathrm{P}}=|i\rangle\langle i|$ is a projection operator that projects any state to the space spanned by $|i\rangle$. Show that $g^{\hat{\mathrm{P}}}=$ $1-(1-g) \hat{\mathrm{P}}$ where g is a real number.
Ex. 13 Consider a quatum system whose Hilbert space is two-dimensional. The system is usually termed as a two-level system.
(a) 10 Show that in general, the density matrix $\hat{\rho}$ is characterized by three real numbers $\left(b_{x}, b_{y}\right.$ and $\left.b_{z}\right)$ and can be written in the form $\hat{\rho}=\frac{1}{2}(I+\vec{b} \cdot \vec{\sigma})$ with $\vec{b} \cdot \vec{\sigma}=b_{x} \sigma_{x}+b_{y} \sigma_{y}+b_{z} \sigma_{z}$. Here $I, \sigma_{x}, \sigma_{y}$ and σ_{z} are given by

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(b) 5 Find the condition for \vec{b} so that the 2×2 matrix, $\frac{1}{2}(I+\vec{b} \cdot \vec{\sigma})$, is indeed a density matrix. What is the condition in terms of \vec{b} when $\hat{\rho}$ describes a pure state?
Ex. 1410 As we know, the probability current density in the Schrödinger equation is given by

$$
J(x)=\frac{i \hbar}{2 m}\left[\Psi(x) \frac{\partial}{\partial x} \Psi^{*}(x)-\Psi^{*}(x) \frac{\partial}{\partial x} \Psi(x)\right] .
$$

Construct the current density operator $\hat{J}(x)$ in terms of $\hat{\mathrm{x}}$ and $\hat{\mathrm{p}}$ such that $\langle\Psi| \hat{J}(x)|\Psi\rangle=J(x)$. Note that the x in $\hat{\mathrm{J}}(x)$ is a parameter, not an operator.

