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Why Precision Light?




& Metrology

& Frequency, Time and Length Standard

& Physical Constants

& Precision Probe for Small Effects and Internal

Structure of Molecules

& Temporal Variation of Physical Constants, QED ‘Iest etc.

& Practical Applications

& DWDM for Optical Fiber Communication, Quantum..

Information?
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Optical Frequency Measurement
in Pre-OFC Era
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FIG. 2. Experimental setup for the frequency measurement
of the 1S-2S transition in atomic hydrogen (®L, phase-locked
loop: SHG, second harmonic generation).

Laser Shuttle between PTB & Hiinsch’s Group
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Understanding OFC
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How to Build a OFC
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How to Build a OFC

& Cavity Enbanced Phase Modulation.




How to Build a OFC

& Cavity Enbanced Phase Modulation.
& Mode-locking Lasers

& Tisapphire (153+:A1.0;): 800 nm.

& Crforsterite (Cr3-Mg.Si0,): 1235 nm.

& Er-doped Fiber: 1550 nm.
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Cavity Enhanced Phase Modulation

& Frequency sidebands are
generated by phase
modulator and enbanced by
Fabry-Pérot cavity

& Originally constructed for
picosecond pulse generation.
in 1972 and re-implemented
by M. Kourogi, K.
Nakagawa, M. Obtsu in.
1993 for frequency

measurement,
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Cavity Longitudinal Modes




Fig. 2. The construction of the present optical frequency comb generator.
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Intensity(10dB/div)

1.545um  (1nm/div)
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Mode-locked Lasers

Laser gain
bandw idth

Intensity

& Multi-longitudinal-mode_ in_
frequency domain and pulse

operation in. time  domain.

Frequency

& The modes are equal-spaced in.

frequency and phase-coberent.
& The frequency of each mode

can be written as:
Frequency
F n="nx F r+ F 0

Laser ouiput specirum

|IIL

Frequency

Caviry longitudinal mode structure

—-| |-—Av-d2!.

Intensity

Intensity

% F,: Repetition Frequency
=Longitudinal Mode Spacing |

¥ I, Offset Frequency (| ‘
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With Zero Phase Offset

O
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With Zero Phase Offset
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With Constant Phase Shift

—zero —— &pi/4 — &pii/2
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Fig. 1. Two consecutive pulses of the pulse train emitted by a
mode-locked laser and intensity spectrum of the train. Within the
cavity, the envelope 1s traveling with the group velocity v, which,
in general, differs from the phase velocity of the carrier v,. The
carrier phase relative to the envelope changes from pulse to pulse
by A¢. The modes are offset from being integer multiples of the
pulse repetition rate f, by f, =(A¢/27)f..
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Controlling Frequency of
Mode-locked Laser

A I (A A RS 1%

F,=nxF,+F, Controlling Iy and I, F,,. 15 fixed
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Controlling Frequency of
Mode-locked Laser

& Repetition frequency Fr,
equal to longitudinal (a) . Ovputcouplers
4 ‘i]: Translating Piezo High Reflector
mode spacing, can be (Mode Posiin) & Fhing e
controlled via round- ==
i:Sapphire

(Mode Spacing)
trip path length

Controlling the phase

revolution to fix offset.
ﬁequency T Yeetal, Opt. Lett. 25, 1675(2000)
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Another Way to Control
Oftset Frequency

High intensity within the cavity of mode-locked laser

Optical Kerr Effect, n=n_o+ n..1

Change intracavity intensity to control the offset frequency

F Stenger et al., Opt. Lett. 25, 1553(2000)
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Detecting Oftset Frequency:
f-2f Self-Referencing

F;

e

F,=nxF+F,
Fzmzjan-;_Fo » Fn_,xz _F27L=2x(anf’+F0)_(2anr+Fo)=F

. Reichert et al., Opt. Comm. 172, §9(1999)
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OFC in NTHU




Brief of NTHU OFC

& Based on 1 GHz repetition frequency Kerr-lens mode-locked
Tz:sapphire laser

& Spectrum broadened by a polarization maintaining

microstructure fiber; coverage: §00-1650 nm-

& f-2f self-referencing scheme for offset frequency

stabilization.
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Kerr-lens Mode-locking

An = n, I(r,1)
. Nonlinear medium
No mode-locking — Weak_ Kerrlens  Aperture

Kerr effect. — High cavity { E / /\
loss — Power decrease 7 e

Incident beam Intense pulse

Mode-locking — Strong Kerr o e
effect. = Low cavity loss —
Power increase

Kerr medium: Ti:sapphire Saturated
laser crystal I

Aperture: Pump beam spot.
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Control Repetition Frequency

of OFC

@ Detect the repetition. PZT attached
frequency by fast silicon PD

and lock the frequency to
the signal from 1-GHz RF M1

Pump beam (532 nm) ﬂ
»

synthesizer by analog phase- IS
locked loop -

2.2 mm Ti:S crystal =) M5

30 mm .

PZT controls cavity length

34
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Control Oftset Frequency
of OFC

& Detect the offset frequency

Vid f‘Z f seﬁ-reﬁerencz’ng Pump Power Controlled by AOM
scheme and lock the

frequency to the frequency
form low frequency M1

Pump beat%ﬁsz nm} ﬂ

synthesizer by digital phase- S

= 2.2 mm Ti:S crystal =)
locked loop L

< 30 mm >

M5

& _AOM controls pumping

power

35
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STANFORD RESEARCH SYSTEMS, INC.
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MODEL PRS10

CUSTOMER PART NUMBER:

O
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Table 4.4: Measured P-branch lines on (00°1-00°0) band

Table 4.5: Measured R-branch lines on 00°1 < 00°0 band

P branch line Gas pressure Present result HITRANO4  difference

(mTorr) (kHz) (MHz) (kHz)
P(56) 40 68 834 038 921(15) 68 834 039(3) -775
P(54) 40 68 900 642 151(11) 68 900 642(3) -667
=252 40 68 966 529 482(10) 68 966 530(3) -463
P(50) 30 69 031 700 054(9) 69 031 700(3) -184
P(48) 30 69 096 152 910(9) 69 096 153(3) 81
P(46) 30 69 159 887 185(9) 69 159 887(3) 338
P(44) 30 69222902 134(9) 69 222 901(3) 652
P(42) 30 69 285 196 804(10) 69 285 196(3) 937
P(38) 30 69 407 621 923(9) 69 407 620(3) 1459
P(36) 2 69467 750 707(9) 69 467 749(3) 1709
P(34) 2 69 527 155 865(11) 69 527 154(3) 1972
P(30) 2 69 643 791 832(10) 69 643 789(3) 2334
P(28) 2 69 701 020 989(10) 69 701 019(3) 2490
P(26) 2 69 757 523 218(12) 69 757 521(3) 2655
P(22) 2 69 868 343 412(10) 69 868 341(3) 2828
P(20) 2 69 922 659 782(9) 69 922 657(3) 3130
P(18) 2 69976 245 898(12) 69 976 243(3) 2963
P(16) 2 70029 101 083(14) 70 029 098(3) 3089
P(14) 270081 224 268(12) 70 081 221(3) 3068
P(12) 270 132 614 878(10) 70 132 612(3) 3075
P(10) 2 - 70:183.272 067(10) - 70 183 269(3) 3103
P(8) 270233 195 001(10). 70 233 192(3) 3098
P(4) 2:.-70:330 835 136(10) 70 330 832(3) 3108
P(2) 30 70378550 790(10) 70 378 548(3) 3135

AESES s Dy e e | Sl SR s

. —— . —— il C— i P A i i, i 5

R branch line Gas pressure Present result HITRANO4  difference

(mTorr) (kHz) (MHz) (kHz)
R(62) 40 71523 708 501(11) 71 523 709(3) -386
R(60) 40 71 500 327 965(15) 71 498 830(3) -620
R(58) 40 71476 187 894(11) 71 476 189(3) -710
R(56) 40 71 451 288 976(10) 71 451 290(3) -695
R(54) 40 71 425631 898(11) 71 425 632(3) -516
R(52) 40 71399 217 159(10) 71 399 217(3) -331
R(50) 20 71372 045 466(11) 71 372 046(3) -125
R(48) 20 71344 117 501(10) 71 344 117(3) 126
R(46) 20 71315433 898(9) 71 315 434(3) 365
R(44) 20 71 285 995 348(10) 71 285 995(3) 655
R(42) 2071 255802 495(10) 71 255 802(3) 920
R(40) 20 71 224 856 328(8) 71 224 855(3) 1489
R(38) 20, 71 193 156 751(9)-. 71 193 155(3) 1577
R(36) 271 160 704 945(10) 71 160 703(3) 1705
R(34) 2771127501 715(12) . 71 127 500(3) 1928
R(32) 271093 547 578(17) 71 093 545(3) 2135
R(30) 2. 71.058 843 255(10) 71 058 841(3) Wi
R(28) 271023389 424(10) 71 023 387(3) 2462
R(26) 2 70987 186'808(9) 70 987 184(3) 2603
R(24) 2 70950 236 211(9) 70 950 233(3) 2776
R(22) 2 70912 538 109(9) 70 912 535(3) 2826
R(20) 2 70 874 093 451(11) 70 874 091(3) 2953
R(18) 2 70834903 061(8) 70 834 900(3) 3262
R(16) 2 70 794 966 952(8) 70 794 964(3) 3016
R(14) 2 70 754 286 639(8) 70 754 284(3) 3040
R(12) 2 70 712 862 655(9) 70 712 860(3) 3119
R(10) 2 70 670 695 563(9) 70 670 692(3) 3095
R(8) 2 70 627 786 288(10) 70 627 783(3) 3145
R(6) 2 70 584 135 435(12) 70 584 132(3) 3093
R(4) 2 70539 743 863(9) 70 539 741(3) 3109
R(2) 2 70494 612 370(8) 70 494 609(3) G2
R(0) 20 70 448 741 463(8) 70 448 738(3) 3130

- — ——

e I - E — o —— % ST T

Monday, March 16, 2009

40



W A o i g o g g o g g o s e - o S g & o g g o g g o s e - o i g & T T o s
PCN TN PN TN PN TN OPCNN TN N OPCNN TN PN TN OPCNN TN B PCNN TN N PCNN TN OPCNN TN SN TN S

B N/ N/ v, N/ N/ N/ w .\’ ’ : \ \ 7 ’ - p N/ N/ v, N/ N/ N/ w \ 7 ’ : N \ 7 ’ - p; N/ N/ v, \ N S N/ W \ 7 ’ y w \ 7

7Li 25-3S Two-photon “Iransitions




What can OFC do for us?




Optical Clock

Optical Clock Transition Foc

Fr=(Foc-Fo)/N
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Coherence Link between Far
Separated Lasers

Laser 1 Laser 2

Potential Applications: EI'T, CARS, DFG, OPO
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Direct Frequency Comb
Spectroscopy (DFCS)

Direct absorption spectroscopy
Cauvity enbanced spectroscopy
Cauvsty ringdown spectroscopy

Two-photon spectroscopy
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