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We apply the recently introduced two-step method to the lowest triplet electronic
states of the diatomic molecules Liz, Naz, NaK, and Kz. The  ana ly t i ca l  po t en t i a l
energy curves of these states are constructed in the form of inverse polynomial with the
experimental vibrational energies as the only inputs. The dissociation energies and the
equilibrium constants are also determined. The forms of the interatomic potentials have
correct asymptotic behavior in both the short range limit and the long range limit. In
contrast to the situations in the widely-used RKR method and also the Dunham type
potentials, none of the unphysical inner and outer walls appears in our interatomic
potential curves. Based on the potentials obtained, it is predicted that additional
unobserved higher vibrational bound states exist for all the systems considered here.
This is to be compared with the fact that both the RKR method and the Dunham type
potentials have so far failed to predict the existence of the additional bound states for
these systems. The described treatments can be applied to other systems as well.

PACS. 31.15.Pf  - Variational techniques.
PACS. 33.15.Fm  - Bond strengths, dissociation energies.
PACS. 33.20.T~  - Vibrational analysis.

I. I n t r o d u c t i o n

One of the most widely used methods to construct the potential energy curves of
&atomic  molecules from spectroscopic constants is the RKR method [l]. Based on the
semiclassical approximation, the RKR method yields directly for each energy level a pair
of turning points in the interatomic potentials. However, due to truncation errors and
numerical instabilities, it usually results in an unphysical behavior for the inner-wall of
the potential, especially for high vibrational levels near the dissociation limit. And various
attempts have been devoted to eliminate the unphysical behaviors from the potential energy
curves obtained from the RKR method [2:3].

Because of its simplicity, the Dunham type potential [4] is one of the most popular
model potentials used to calculate the spectroscopic constants so as to fit the experimental
vibrational and rotational levels. Since the Dunham type potential is a polynomial of the
internuclear distance T, it can effectively describe the behavior of the interatomic potential
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near the equilibrium point. And usually the low-lying vibration-rotational states can be
successfully fitted. However, it has the intrinsic difficulty that it diverges at large internu-
clear distance and results in an unphysical outer wall for the potential energy curve. So, for
high vibrational states near the dissociation limit, neither the eigenvalues nor the potential
curves can be successfully represented.

In general, it is very difficult to predict the asymptotic behavior of the interatomic
potential and the unobserved high lying levels near the dissociation limit by either the
Dunham type potential or the RKR method. Recently, we have introduced a twostep
method in calculating the vibration-rotational spectrum of diatomic molecules [5-71.  It can
deal with effective potentials in a generalized polynomial form such as

with n being either positive or negative integers or even arbitrary real numbers. The method
can readily be applied to a wide range of potentials including the Lennard-Jones potentials
and the Dunham type ones. The effective potential in general consists of a short range
repulsive part and a long distance attractive part. The sharp rising repulsive potential core
arises from the Coulomb interactions and also from the kinetic energies and the exchanging
interactions of the electrons. The long range attractive potential comes mainly from the
induced instantaneous dipole-dipole and higher order multipole interactions and behaves
asymptotically as re6, r-ë,  . . . . Both effects tend to zero as the internuclear distance
approaches infinity. In the Lennard-Jones potential, the rT6 term was used to describe
the asymptotic behavior, and the r-r2 term was introduced to describe the sharp rising
short range behavior. In this work we employ an effective potential of the form (1) with
n, E -6, -8,. . . > up to -24 for the diatomic molecules Liz, Naz, NaK, and K2. The form
of the interatomic potential is expected to describe correctly the asymptotic behaviors in
both long range and short region. This also makes it possible to predict the unobserved
high lying vibrational bound levels.

Brief description of this method are presented in section II. In section III, the above
algorithm is applied to the molecules Liz [8,9],  Na2 [lo], NaK [II], and K2 [la] to find their
potential energy curves of the lowest triplet electronic states from the experimental vibra-
tional spectra. The dissociation energies and the equilibrium constants are also presented.
To test the predictive power of our method, some of the unobserved higher vibrational levels
are given for each system. The conclusions are given in the final section.

II. The two-step method

The two-step method is consisted of two main procedures. In the first step, a trm-
formation of domain from the positive half axis of the internuclear distance T to the whole
real axis is introduced, and the variational method is applied to the Hamiltonian opera-
tor in the second quantization form to find the ground state of the system by algebraic
manipulations. In the second step, the ground state energy is improved by a standard Gag-

e donalization procedure around the ground state using the harmonic-oscillator basis obtain
from the first step. The low-lying excited states are also obtained simultaneously.
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The radial part of the Schrodinger equation of the diatomic molecule can be written
in atomic units as

(2)

where the effective potential Vejf  includes both the Coulombic and the centrifugaJ compo-
nents and can be written as

v&T) = V(T) + y$ = -&Tî.
n

In order to use the Hermite basis of harmonic oscillator, a transformation of the domain of
the internuclear distance T from the positive real axis to the whole real axis is introduced
in the first step. A convenient transformation used is

T=e2. (4)

The Schrodinger equation becomes

(5)

with

V,,(z) = Cu,enx.
n

(6)

After the transformation (4), the Hamiltonian is no longer Hermitian. To retain the her-
miticity of the Hamiltonian, the following transformation is further introduced.

g = e$ìHe-ix, 4(z) = e+R(z). (7)

The revised Hamiltonian is now Hermitian and can be written as

We now expand in terms of the creation and annihilation operators by

with the commutation relations

[c&a+]  = 1, [VI = 0, ,[a+ a+] = 0 .

(8)

(9)

(10)
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The two parameters w and r are the variational frequency and the displacement of the
origin of the harmonic oscillator system respectively. Following procedures described in
Ref. [5-71,  the Hamiltonian & is translated into the second quantized form and is rewritten
in a normal ordered form such that all the creation operators are pushed to the left of all
the annihilation operators. After some straightforward manipulations, we have

H= - zexp($-2r)exp(--Eat)  [(at)2+fz2]exp(-Efz)

+ iexp (k -2,) e x p  (-Eat) [ata]exp  (-Ea) ,
77,

+ C, a,exp
n2
- t
4PW

nr e x p
) (

n .\

FBI) exp ( >gJa .
The harmonic oscillator eigenstates

a ] 0 >= 0, ,U>L$ IO> (12)

are now taken as the basis with ] 0 > being the trial wave function for the ground state.

+  (z+&)exp($-21)cxp(--Eat)exp(--ga)  ìî

The expectation value of the trial ground state is

En = <O]H]O>

=  (i++-)exp(b--2r)+x,a,exp  $+nr .
( )

(13)

The variation conditions

LEO-x0, -=
dr

LEO o

l3W

for the two parameters w and r can now be written as

(z+$)exp(k-2r)  -Fnanexp($+nr) =O,

iLîëexp(k-2r)  -Fn[n+2ia,exp($+nr)  =O

(13

(16)

The solutions of w and r can be obtained by iteration or by standard Newton-Raphson
method.

In the second step the ground state energy level is improved by diagonalizing the
Hamiltonian matrix in a truncated basis set using Householder or standard Jacobi method
[I3]. The Hamiltonian matrix elements can be written as

L- --_---



VOL. 34 HORNG-TAY JENGANDCHEN-SHIUNGHSUE 1241

(17)

(18)

(19)

with

2
cYe=- -)

JPW

The matrix elements can be evaluated by using the following identity

u-j (,!,!)1/2,v+u-k-j-2q

<  21 I IFa+ (ay akPa I ?I >= c
q=. (u - j - q)!(v - k - q)!q!  .

By increasing the number of basis, the whole Hilbert space of the wave function can be
recovered and the exact eigenvalues can be obtained. The advantage of the two-step ap-
proach is that, in general, the rate of convergence is fast and only a small set of basis is
needed for the desired accuracy.

III. Applications

In this section we report an application of the two-step method to construct the
potential energy curves of the lowest triplet electronic states of Liz, Naz, NaK, and K2 in
inverse polynomial form with the experimental vibrational energies as the only inputs. The
potential polynomial starts. with terms of negative integer power rm6 to correctly account
for the asymptotic behavior of rb6(dipole  interaction), rm8(quadruple interaction), and so
on, for the long range potential. Terms of the form rmn with large integer n are used to
account for the sharp rising short distance behavior. The correct behavior of the potential
at both limit T --f 0 and T + co also affords the additional ability of finding unobserved
higher bound vibrational states between the highest observed levels and the dissociation
energies. Meanwhile, the equilibrium constant T, and the dissociation energy D, are found
simultaneously. Atomic units from Ref. [14] are used through out this paper and the values
of the masses of the nuclears for all the molecules are based on Ref. [15].

111-l. Liz
The 13Cz - a3Cz  transition of Liz has been observed via collisionally induced flu-

orescence with a Fourier-transform spectrometer by Linton  et al. [8]. Eight vibrational
energies of the Liz a3Cz state reported in Ref. [8] are used to construct the potential en-
ergy curves for 6Li2 and 7Li2  in inverse polynomial form (1) with negative integer powers
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starting with n = -6 up to n = -24. The fitted values of the parameters for the poten-
tials of 6Liz  and 7Li2  together with the corresponding dissociation energies D,, equilibrium
constants r,, variational parameters w and r, and the standard deviations cr of the fitting
are summarized in Table I. Also listed in the table are the values of the reduced mass p,
the number of parameters np, and the number of energy levels of the vibrational states ne
used for fitting. A comparison of the results of the fitted energy levels of ëLiz  and 7Liz with
the experimentally observed energy levels is presented in Table II. We obtained the values
(4.2716 A, 4.2635 A) for the equilibrium constants T, for the a3C$ state of 6Liz  and 7LiZ,
respectively. These values are slightly larger than the values (4.1705 A, 4.1716 A) given in
Ref. [8,9].  On the other hand, our dissociation energies 0,(333.72 cm-r, 333.77 cm-ë) for

TABLE I. Potential parameters for the a3 + state of 6Lix  and 7Liz molecules. The npC,
parameters are derived from ne states with reduced mass /.L. d is the number of
basis used. D,, T, and g are the resultant dissociation energy, equilibrium con-
stant and standard deviation respectively. w and 7 are the variation parameters.
The atomic units are used.

6Liz 7Li2

ne 8 8

nP 11 11
d 70 70

P 5482.4495 6394.6970

De 0.00152054 0.00152077

Te 8.07218184 8.05688029
f7 0.00000003 0.00000002
W 0.0197194792 0.0182484936
7- 2.0884238104 2.0865264204

1.5205403973e  - 03
-3.2399799228e + 02
-7.7027052967e  + 05

1.0999711262e  + 08
5.3177452958e  + 09

-2.5681887134e + 12
2.8166203483e  + 14

-1.6268717793e  + 16
5.4095009108e  + 17

-9.8154767010e + 18
7.5553608691e  + 19

1.5207732486e  - 03
-3.2383119112e t 02
-7.7026428560e  + 05

I.0999579407e t 08
5.3177349499e  t 09

-2.5681936237e  + I2
2.8166215046e  t 14

-1.6268712720e  t 16
5.4094929434e  t 17

-9.8153379628e  t 18
7.5549356032e  t 19
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TABLE II. Experimental and theoretical vibrational levels of the a3Cz  state of 6Liz and
7Li2  molecules in atomic units. There exist at least one and two more un-
observed higher bound levels(*) for 6Li2 and 7Lix  molecules separately. The
experimental and theoretical dissociation limits D, are listed at the end of the
table.

6Liz exp . the. 7Liz exp. the.

0.00015696
0.00044271
0.00069390
0.00091143
0.00109563
0.00124639
0.00136336
0.00144634

0.001517

0.00015694
0.00044276
0.00069388
0.00091139
0.00109565
0.00124643
0.00136333
0.00144634
0.0014966

0 . 0 0 1 5 2 0 5 4 D,

0.00014542
0.00041268
0.00064990
0.00085822
0.00103795
0.00118901
0.00131122
0.00140439

0.001517

0.00014542
0.00041266
0.00064994
0.00085821
0.00103791
0.00118902
0.00131125
0.00140437
0.00146872
0.0015058
0.00152077

the a3Cz  state of 6Liz and 7Li2  are in good agreement with the values (333 cm-l, 333
cm-ë)  reported in Ref. [8,9].  A comparison of our potential energy curves for both 6Liz
and 7Liz molecules with the RKR [8] and the Dunham type [16] potentials is also presented
in Fig. 1 and Fig. 2 respectively. Except near the dissociation region, there are very
good agreements among all three potentials: the RKR, the Dunham type and our inverse
polynomial potential energy curves. It is interesting to notice from Fig. 1 and Fig. 2 that
our potential curves for 6Li2  and 7Li2 almost coincides completely for the whole range,
demonstrating the applicability of the adiabatic approximation. As can be seen in the
figures, for both 6Liz  and 7Li2  molecules, the Dunham type potential curves turn over
beyond the highest RKR outer turning points forming unphysical outer walls. Whereas
our inverse polynomial potential energy curves of both 6Lix and 7Lix  are well-behaved
over the whole range. The standard deviations between the reproduced energies and the
experimental vibrational spectra turn out to be (0.006 cm-*) and (0.004 cm-ë)  for 6Li2
and 7Li2  respectively. Based on the potentials obtained, we predict that there exists at
least one and two more unobserved higher bound states between the dissociation energies
and the highest levels for 6Liz  and 7Li 2, respectively. They are listed at the end of Table
II for references and are also shown in Fig. 1 and in Fig. 2. Notice that both the RKR
method and the Dunham type potentials were unable to find any additional bound states
above the observed ones [8,16].
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5.0 10.0 15.0 20 0 25.0
r (B;hr  radius)

FIG. 1. The resultant curve (solid curve), the

RKR (* symbol) [8] and the Dunham
type (dashed curve) (161 potential for
the a3C$ state of 6Liz molecule. The
three curves agree well for most re-

gion except the outer wall of the Dun-
ham type one. The solid horizontal
line is the resultant dissociation en-
ergy while the dashed horizontal line
is the predicted higher bound level.

: 0.0012
x

:
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FIG. 2. The resultant curve (solid curve), the

RKR (* symbol) [8] and the Dunham
type (dashed curve) [16]  potential
for the a3Ci state of 7Liz  molecule.
The solid horizontal line is the resul-
tant dissociation limit while the two
dashed horizontal lines are the pre-
dicted higher bound levels.

111-2. Na2
The bound vibrational levels of the Na2 a3Cz state have been observed in rotationally

resolved fluorescence spectra from single rotation-vibration levels of two 311s  states by Li
et al. [lo]. Thirteen vibrational levels of the Naz a3Cz state reported in Ref. [lo] are
used as inputs to construct the potential energy curve for Naz in inverse polynomial form.
The fitted parameters of the Na;! a3 + state are presented in Table III. A comparison ofC,
the fitted energy levels of Na2 with the experimentally measured values is presented in
Table IV. An equilibrium constant (re = 5.1988 A) for the Na2 u3C$ state is obtained.
It is slightly larger than the value (5.0911 A) given in Ref. [lo]. Our dissociation ene@!
0,(174.81  cm-ë) for Na2 is in good agreement with the value (174.45 cm-i) reported in
Ref. [lo]. A comparison of our potential energy curve with the RKR [lo] and the Dunhafl
type [16] ones for Naz molecule is presented in Fig. 3. Our curve lies closely to the one
obtained by the RKR method over the whole region shown in the figure. The Dunham tyíPe
potential is constructed from the lower nine states only and does not agree  with either the
RKR curve or with our curve in the whole region involved. The latter curve turns out to he
quite unnature at large internuclear distance and turns over beyond the tenth outer RKR
point. Based on our potential energy curve, a further unobserved bound vibration al
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TABLE  III. Potential parameters for the a3 + state of Naz molecule. The np parametersC,
are derived from n,e states with reduced mass /.L. d is the number of basis used.
D,, T, and ~7 are the resultant dissociation energy, equilibrium constant and
standard deviation respectively. w and r are the variation parameters. The
atomic units are used.

Na2
-

ne 13
np 11
d 100
P 20953.8940
D, 0.00079646
l-e 9.82439763
u 0.00000132
W 0.0105198869
7- 2.2848688460

7.9646472856e  - 04
-8.5626509869e + 02
- 1.3377654588e  + 05
-5.2224714673e + 08

2.6608963653e  + 11
-5.8778910177e + 13

7.4436054901e  + 15
-5.7719377449e + 17

2.7118549135e  + 19
-7.0965567244e + 20

7.9438573569e  + 21

state is predicted to lie very closely to the dissociation limit. It is listed at the end of Table
IV and is also shown in Fig. 3. The standard deviation (cr = 0.21 cm-r) of the resultant
potential energy curve of the Na2 molecule is much worse than the cases for the other three
molecules. The same situation holds also for the Dunham type potentials [16].  We do not
understand the origin of this discrepancy. Further experiments and theoretical studies will
clarify this issue.

111-3. NaK
Fluorescence spectra of the NaK molecule have been recorded via Fourier-transform
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TABLE IV. Experimental and theoretical vibrational levels of the a3C$ state of Naz
molecule in atomic units. The resultant levels do not match the experimen-
tal spectrum well. The unobserved higher bound level(+) is very close to the
dissociation limit D,.

Nax exp . the.

0

1
2
3
4
5
6
7
8
9

10
11
12
*

D,

0.0000534
0.0001612
0.0002567
0.0003460
0.0004257
0.0005006
0.0005655
0.0006218
0.0006648
0.0007079
0.0007389
0.0007646
0.0007800

0.0007949

0.0000541
0.0001595
0.0002571
0.0003465
0.0004275
0.0005000
0.0005641
0.0006200
0.0006677
0.0007074
0.0007393
0.0007635
0.0007805
0.000791
0.0007965

spectrometer by Ross et al. [II]. Twelve vibrational energies of the NaK a3Cf state
reported in Ref. [ll] are used here to construct the potential energy curve for NaK molecule
in inverse polynomial form. The fitted values of the parameters for the a3C+ state of
NaK molecule are summerized in Table V. A comparison of the fitted energy levels of
the NaK a3C+ state with experimentally observed energy levels is presented in Table VI.
An equilibrium constant (TV = 5.4342 A) is obtained for the a3C+ state of NaK. The
dissociation energy D, is found to be (208.98 cm-ë). Both values are in good agreement
with the values (re = 5.4385 A, D, = 209.1 cm-ë) reported in Ref. [ll]. A comparison
of our potential energy curve with the RKR [ll] and the Dunham type [16] ones for KaK
molecule is presented in Fig. 4. The RKR, Dunham type and inverse polynomial potential
curves do not quite agree with each other in most region. Compared with our curve*
both the RKR and the Dunham type ones bend a little over in the inner part. Also, the
Dunham type potential diverges in the asymptotic region. Our resultant inverse polynomial
potential energy curve is well-behaved in both region. The standard deviation between the
reproduced energies and the experimental vibrational spectra turns out to be (0.01 cm-ë)

for NaK molecule. Listed at the end of Table VI and also shown in Fig. 4 are three predicted
unobserved higher bound levels based on our calculation.
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TABLE  V. Potential parameters for the a 3 + state of NaK molecule. The np parametersC
are derived from ne states with reduced mass 1-1.  d is the number of basis used.

De, r, and CJ are the resultant dissociation energy, equilibrium constant and
standard deviation respectively. w and r are the variation parameters. The
atomic units are used.

NaK

ne

np
d

12
11
80

26356.5960
0.00095217

10.26924529
0.00000007

0.0107289310
2.3291535344

9.5217284966e - 04
-5.6437407800e + 02
-2.5491313121e + 06

7.7829175339e + 08
-2.9786057944e + 10
-3.7849150108e + 13

1.1153501671e  + 16
-1.5133099585e + 18

1.1182289673e  + 20
-4.3418142692e + 21

6.9467670637e  + 22

111-4. K2
Several Rydberg triplet states and the a3 + state have been observed via the per-C,

turbation facilitated optical-optical double resonance technique by Li et al. [12]. Eighteen
vibrational energies of the K2 a3Ci  state reported in Ref. [12] are used to construct the
potential energy curve for K2 molecule in inverse polynomial form. All the fitted results
of the parameters for the a 3 C,+ state of K2 molecule are summarized in Table VII. A com-
parison of the fitted energies of the K2 a3 + state with the experimental observed energyC,
levels is presented in Table VIII. An equilibrium constant (re = 5.7935 A) is obtained for
the u3Ci state of K2 molecule. The value is close to the value (5.7725 A) given in Ref.
[la]. Our dissociation energy D,(253.52  cm-ë) is also in good agreement with (254 cm-ë)
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0.0 I I I ! , 1 I I / / , / / / , ,

5.0 10.0 15.0 20.0 25.0
r (S;hr radius)

FIG. 3. For the a3Cz state of Naz  molecule,
the resultant curve (solid curve)
matches the RKR potential (* sym-
b o l )  [lo]  f o r all thirteen levels
much better than the Dunham type
(dashed curve) [16]  one for the lower
nine states. The higher unobserved
bound level (dashed horizontal line)
is predicted to be very close to the
resultant dissociation limit(solid  hor-
izontal line).

-2

2 0 0008
vxr
: 0.0006

0.-
r;
2 0.0004
z

5.0 10.0 15.0 20.0 25.0
r (i3qhr radius)

FIG. 4. The resultant curve (solid curve), the
RKR (* symbol) [ll]  and the Dun-
ham type (dashed curve) [16]  po-
tential for the a3C+ state of NaK
molecule. Compared with our curve,
the RKR and Dunham type ones
bend a little over for inner part, and
the Dunham type one diverges in
asymptotic region. Between the re-
sultant dissociation energy (solid hor-
izontal line) and the highest observed
vibrational level, there exists at least
three more bound states(dashed hor-
izontal lines).

reported in Ref. [12].  A comparison of our potential energy curve, the RKR [la]  and the
Dunham type [16] ones for the a3Cz state of K2 molecule is presented in Fig. 5. Using
refined techniques described in Ref. [17] and Ref. [18],  the over bended RKR potential in
the unphysical inner wall has been shifted away. Our curve coincides very well with the
revised RKR potential for all the vibrational states, while the Dunham type one b e n d s
a little over in the inner region and diverges in the outer region. Note that our inverse
polynomial potential energy curve is well-behaved in both the short internuclear distance
region and the long internuclear distance range. The standard deviation (T turns out to he
(0.01 cm-ë) for Kz molecule. Based on the potential energy curve obtained above, it is
predicted that there exists at least three higher unobserved bound levels for the Kz a3C$
state. They are listed at the end of Table VIII for references and are also shown in Fig.
5. In comparison, both the RKR method and the Dunham type potential were not able to
find any additional bound states between the highest observed level and the dissociation
limit [12,16].
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FIG. 5

0.0
10.0 15.0 2 0 . 0 ;

r (Bghr  radius)
. O

For the a3Ci state of Nas molecule, the resultant curve (solid curve), the RKR (* symbol)
[I21 and the Dunham type (dashed curve) [I61 potential agree well for most region except
the outer wall of the Dunham type one. Beneath the resultant dissociation limit (solid
horizontal line), three more unobserved higher bound levels (dashed horizontal lines) are
obtained.

IV. Conclusion

As mentioned in Ref. [5] and Ref. [7],  the rapid convergence of the twostep calcula-
tion is due to the fact that in the second quantization form the variational principle for the
ìbareî ground state has been carried out analytically in the first step. In addition to the
ground state, accurate energies for the low-lying excited states were also obtained in the
diagonalization process. The rapid convergence enables us to apply the two-step method
to construct the potential energy curves of the diatomic molecules from the experimental
vibration-rotational spectrum.

In this paper, a successful application of the twostep method to the diatomic
molecules Liz, Na2, NaK, and KZ has been presented. Expressing the potential energies as
polynomials of negative integer powers starting with rr = -6, the interatomic potentials
have the correct asymptotic behavior in both the short range limit and the long range
limit. The leading terms rW6, rS8 etc. are used for the T + 00 limit while the terms with
larger negatives integer powers are used for the T + 0 limit. The resultant curves produced
satisfactory fits for the observed energy levels. They are free of unphysical behavior in the
inner and outer walls ,as are frequently encountered in the widely used RKR method and
the Dunham type potentials. Based on the fitted potentials, the existence of at least some
higher vibrational bound states are predicted. This is to be compared with the situations in
the RKR method and the Dunham type potentials which have failed to find the existence
of these states.

--.-
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.

TABLE VI. Experimental and theoretical vibrational levels of the NaK a3C+ state in
atomic units. There are at least three higher unobserved bound levels(*) for
NaK molecule. The last line are the dissociation limits D,.

NaK exp. the.

0
1
2
3
4
5
6
7
8
9

10
11
*
*
*

D,

0.0000517
0.0001508
0.0002442
0.0003319
0.0004139
0.0004899
0.0005602
0.0006246
0.0006830
0.0007354
0.0007818
0.0008222

0.0009527

0.0000518
0.0001507
0.0002442
0.0003320
0.0004139
0.0004899
0.0005601
0.0006245
0.0006830
0.0007355
0.0007819
0.0008221
0.0008563
0.000885
0.00091
0.0009522

Based on the fitted potential, we have predicted the existence of one additional
vibrational level with energy of 0.0014966 a.u. for the a3Cz state of 6Liz  and two levels of
0.00146872, 0.0015058 a.u. for 7Li2  below the dissociation limit which is 0.00152 a.u..  The
wave functions of these states extend beyond 20 and 18, 21 ae (Bohr-radius) respectively. AS

mentioned in Ref. [8] that one of the main experimental difficulties of finding these higher
vibrational levels in the experiments for Liz come from the very intense AíCZ  - XíC:
transitions. For Naz, we have predicted an additional higher vibrational level with energy
of 0.00791 a.u. which is very close to the ionization limit 0.007965 a.u.. In the mean time,
the wave function extends far beyond 25 au for this vibrational state. This long range
wave function poses a challenging problem for the experimental observation. In the case of
NaK, we predict three additional levels : 0.0008563, 0.000885, and 0.00091 a.u. which are
considerably beneath the dissociation energy 0.0009522 a.u.. The wave functions of these
states are limited within 20 au and these vibrational levels may perhaps easier be observed
experimentally. Similarly, for K 2, the three predicted levels are 0.0010914, 0.001110, and
0.00112 a.u. below the dissociation limit of 0.00115514 a.u.. The wave functions of these
higher states extend to 21 N 23 an. It is hoped that our work will stimulate further
experimental works to confirm the existence of these states.
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TABLE VII. Potential parameters for the a 3 + state of K2 molecule. The np parametersC,
are derived from ne states with reduced mass p. d is the number of basis
used. D,, T, and g are the resultant dissociation energy, equilibrium constant
and standard deviation respectively. w and T are the variation parameters.
The atomic units are used.

K2

ne

nP
d

P
De
5
u

W

7

18
11

120
35513.2475
0.00115514
10.94810346
0.00000006
0.0116102390
2.3931662416

1.1551362066e  - 03
-1.4375301751e + 03
-4.7910072130e + 06

2.5890012647e  + 09
-8.2133399765e + 11

1.5948627059e  + 14
- 1.6743862483e  + 16

6.5982050861e  + 17
3.1075412732e  + 19

-3.8004004047e + 21
9.9809541796e  + 22

As an indication for the predictive power of this method, we have also fitted the
interatomic potential of 6Li2 with the lower 7 states instead of 8 observed levels. With this
potential, we then calculate the energy levels of the 8th and 9th vibrational states. The 8th
level generated from the lower 7 states has an energy of 0.00144636 a.u. which is 2 x 10m8
a.u. higher than the experimental value of 0.00144634 a.u.. This small deviation is to be
compared with the value of the 8th vibrational state well fitted with the experimental data
within this work as shown in Table II. For the 9th level, the predicted values are 0.00149662
a.u. and 0.00149664 a.u. obtained from the lower 8 and 7 states respectively. Thus the
accuracy for the predicted 9th excited vibrational level of 6Li2 is about 2 x 10e8 a.u. which
corresponds to an error of 1.3 x 10-s and is a successful demonstration of the possible
predictive power of this method.
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TABLE VIII. Experimental and theoretical vibrational levels of the Kz a3C$ state in
atomic units. There are at least three higher unobserved bound levels(*)
under the dissociation limit D, for Kz molecule.

K2 exp. the.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
*
*
*

D, 0.00115512

0.000048923
0.000143204
0.000233203
0.000318919
0.000400353
0.000477503
0.000550370
0.000618954
0.000683256
0.000743275
0.000799010
0.000850463
0.000897633
0.000940520
0.000979124
0.001013445
0.001043483
0.001069238

_

0.000048860
0.000143274
0.000233254
0.000318925
0.000400326
0.000477462
0.000550331
0.000618930
0.000683255
0.000743301
0.000799060
0.000850522
0.000897675
0.000940518
0.000979060
0.001013336
0.001043409
0.001069378
0.0010914
0.001110
0.00112
0.00115514

The weakest point in the approach here is the behavior of the interatomic potentials in
the deep well around the equilibrium internuclear positions of the molecules. It is artificially
generated by a cancellation of competing terms of pure negative power form which can
correctly describe the behavior in the short and the long range region. The resultant
potential curves are expected to be difficult in an accurate description of the behavior of
the interatomic potential near the equilibrium internuclear distance. Thus the values of
the equilibrium positions obtained here will be the least accurate ones among the results
presented here.

Note that the two-step method could readily be applied to the Dunham type potentials
thus achieving very accurate potential energy curves near the equilibrium positions, but at
the expense of the appearance of the intrinsic divergence behavior in the T + 00 regjon
like the Dunham type potentials. But here we have the advantage that the method can be
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easily generalized to more complicated molecular systems such as triatomic molecules or
other  polyatomic  molecules as well. Such applications will be presented in the future. The
results  of this work demonstrates that this method is a powerful tool in dealing with the
vibration-rotational spectrum of diatomic  molecules.
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