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ABSTRACT: Thermoelectric (TE) devices have been attracting increasing
attention because of their ability to convert heat directly to electricity. To date,
improving the TE figure of merit remains the key challenge. The advent of the
topological insulator and the emerging nanotechnology open a new way to
design high-performance TE devices. By combining first-principles calculations
with Boltzmann transport theory, we demonstrate for epitaxial Bi2Se3 thin films
with thickness slightly larger than six quintuple layers, the relaxation time of the
in-gap topological surface states can reach hundreds of femtoseconds, which is
2 orders of magnitude larger than that of the bulk states. Such a strong
relaxation time enhancement achieves an approximately 3 times larger
electrical- to thermal-conductance ratio than the value predicted by the
Wiedemann−Franz law. This condition also enhances the Seebeck coefficient,
and consequently leads to the excellent TE figure of merit zT ∼ 2.1 at room
temperature with high TE efficiency over a wide temperature range. The TE
performance can be further improved by introducing defects in the bulk-like middle layers of the thin film. The improvement is
significant at room temperature and can be even better at a higher temperature. Similar strong enhancement of TE performance
is expected in other topological insulator thin films.
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■ INTRODUCTION

The emerging issue all people face today is the numerous
problems relating to energy supply and consumption. Nearly
70% of the world’s energy is wasted and dissipated into the
environment as low-grade heat.1 Therefore, thermoelectric
(TE) generators, which can convert heat into high-quality
electricity, having advantages of solid-state operation without
moving parts, no release of greenhouse gases, good stability,
and high reliability, have attracted widespread research
interest.2−13 However, the TE devices available to date are
still in limited application mainly because of their low energy-
conversion efficiency.
The efficiency of the TE devices is determined by the

dimensionless figure of merit zT. The TE efficiency approaches
the Carnot limit as zT approaches infinity. Theoretically, there
is no upper limit on the value of zT. However, to date, no
material of zT > 3 has been found.14,15 The main difficulty to
improve the figure of merit stems from the trade-off between
the TE parameters. The figure of merit can be expressed as

zT
S T2σ
κ

=
(1)

where T is the absolute temperature, S the Seebeck coefficient,
σ the electrical conductivity, and κ the thermal conductivity
including the electronic κe and lattice κL parts. For metals, the
electronic thermal conductivity dominates; i.e., κ ∼ κe.
According to the Wiedemann−Franz law, the electrical
conductivity is nearly proportional to the thermal conductivity.
One cannot increase the electrical conductivity and simulta-
neously reduce the thermal conductivity. Therefore, the figure
of merit is mostly determined by the magnitude of the Seebeck
coefficient, which is usually small for metals. For insulators and
semiconductors, the lattice thermal conductivity dominates;
i.e., κ ∼ κL. In principle, one can reduce the lattice thermal
conductivity without significantly changing the electrical
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conductivity. However, the reduction of the thermal
conductivity is usually through introducing all kinds of defects,
which would cause a significant reduction in electrical
conductivity.2,16,17 Furthermore, the electrical conductivity
increases with carrier concentration while the magnitude of the
Seebeck coefficient decreases. Improving the power factor, σS2,
through optimizing the carrier concentration and engineering
the band-structure, and therefore achieving high figure of merit
over a wide temperature range remain a great challenge.8

Topological insulators (TIs), a new class of quantum matter
attracting tremendous attention recently, are materials with an
inverted bulk band gap induced by the strong spin−orbit
coupling with the metallic topological surface states (TSSs)
protected by time reversal symmetry.18−24 Most TIs such as
Bi2Te3, Sb2Te3, and Bi2Te2Se are also good TE materials
because TI and TE materials usually share two common
features, which are not directly related to the TSSs.25−29 (1)
The corrugated constant-energy surfaces with complex band
structures caused by band inversions over the mild TI energy
gaps can lead to high power factors in TE materials. (2) The
large atomic mass with strong spin−orbit coupling for TIs also
brings a low lattice thermal conductivity to improve the TE
performance. When the size is reduced to the nanometer scale,
the TSSs will significantly change the TE performance for both
the two-dimensional (2D) and the three-dimensional (3D)
TIs.30,31 Layered bismuth selenide (Bi2Se3) is one of the most
intensively studied 3D TIs. It has a considerable bulk gap
(∼0.3 eV) and topologically protected metallic surface
states.25,32,33 Although the bulk crystalline Bi2Se3 is not a
good TE material, it has been shown that the TE performance
can be greatly enhanced by fabricating a single-layer-based
composite made from atomically thick layers.34

In this work, through first-principles calculations and the
Boltzmann transport theory, we demonstrate, for Bi2Se3 thin
films with thickness slightly larger than six quintuple layers
(QLs), the TE figure of merit zT reaches a remarkably high
value of 2.1, which is 2 orders of magnitude larger than the
bulk value and is better than that of most good TE materials.
The main cause is the extremely high relaxation time of the in-
gap TSSs which is about 2 orders of magnitude longer than
that of the bulk states. These long relaxation time TSSs can
create a high electrical conductivity even though its carrier
concentration is low. The high relaxation time ratio at a
reasonably low in-gap TSS carrier concentration also leads to a
large magnitude of the Seebeck coefficient with an opposite
sign to the bulk counterpart. This is the anomalous Seebeck

effect first predicted in a theoretical work30 and soon been
confirmed experimentally.35 Based on the aforementioned high
relaxation time ratio, here we report for the first time another
unusual phenomenon: the Wiedemann−Franz law violation.
We find the electrical- to electronic thermal-conductivity ratio
in Bi2Se3 thin films can be ∼3 times larger than the value given
by the Wiedemann−Franz law, which was known as a robust
law limiting the magnitude of this ratio. The experimental
observation of the anomalous Seebeck effect,35 not only
approves our temperature dependence of the Seebeck
coefficient for Fermi levels in different energy regions but
also supports our calculations that the Wiedemann−Franz law
is significantly violated at the same time, as demonstrated in
Supporting Information Section SVII. The significant violation
of the Wiedemann−Franz law was mostly found in a few
strongly correlated systems at cryogenic temperature.36 Here,
the violation of the Wiedemann−Franz law, having nothing to
do with the strong correlation, results from the extremely large
difference in the relaxation time between the in-gap TSSs and
bulk states. This mechanism is not limited to the low
temperature and, hence, opens a new way toward the TE
power generator operating efficiently over a wide temperature
range above the room temperature. Previously this was
considered unlikely using a single material.8,37 The TE
performance can be further improved by introducing defects
in the bulk-like middle layers. Based on our Bi2Se3 thin film
study, similar strong enhancement is expected in other 3D TI
thin films.

■ RESULTS AND DISCUSSION

Electronic Structure and Electron Scattering. Figure
1b shows the electronic structure of the 8 QL Bi2Se3 thin film.
The massless Dirac cone lies exclusively within the bulk band
gap (yellow shaded region) between the valence band edge
(VBE) Ev = −0.5 meV and the conduction band edge (CBE)
Ec = 295 meV. The Dirac cone is composed of doubly
degenerate states with the two TSSs on different sides of the
film. The wave functions of the TSSs (typically with thickness
less than 3 QL as discussed in Supporting Information section
SV) on different sides of the film are spatially separated so that
the contribution from the bulk-like middle 2 QLs (red box in
Figure 1a) is less than 1%. The in-gap TSSs, hereafter denoted
by long lifetime states (LLSs), have long relaxation times τLLS
due to two reasons: (i) The large-angle scattering between the
TSSs on the same side of the thin film is suppressed because of
the chiral spin texture circulating the Γ point as shown in

Figure 1. Crystal structure and the electronic band structure of the 8 QL Bi2Se3. (a) Cystal structure. The red box indicates the middle 2 QLs, i.e.,
the bulk region. (b) Electronic band structure. The yellow shaded bulk band gap indicates the energy interval of the LLSs composed of in-gap
TSSs. The color of the data points represents the bulk contribution from atoms in the red box in panel a. The black spheres show the TSSs with the
bulk contribution (red box in panel a) less than 1%. (c) Spin texture of the constant-energy contours.
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Figure 1c. (ii) The scattering between the TSSs on the
opposite sides of the thin film is negligible because of the
spatial separation between the initial and final states. On the
other hand, all the other states outside the bulk band gap
region, hereafter denoted by short lifetime states (SLSs), have
much shorter relaxation times τSLS because of the significant
elastic scattering with the bulk states. The long relaxation time
of the LLSs can be evaluated by comparing our computed
sheet conductance with the experimental data reported in ref
38 (see Supporting Information Section SI for more details).
The estimated τLLS is 230 fs, which is 2 orders of magnitude
higher than that of the bulk relaxation time of ∼2.7 fs.39 As will
be demonstrated later, the coexistence of the LLS and SLS
carriers in topological insulator thin films with giant relaxation
time differences plays a crucial role toward high-efficiency TE
materials. To deal with multiple channel carriers, we adopt the
dual relaxation time model, which is a generalization of the
conventional constant relaxation time approximation.30 With
this model, the electrical conductance is the sum of the LLS
and the SLS conductances,40 the electronic thermal con-
ductance contains an extra LLS-SLS interaction term, and the
Seebeck coefficient is a conductance-weighted average of the
Seebeck coefficients as discussed in Method.
Thermoelectric Transport Properties. Based on the

previous discussion, it is reasonable to set the relaxation time
as 230 and 1 fs for the LLSs and the SLSs, respectively, in the
TE parameter calculations. The room-temperature TE figure of
merit of the 8 QL Bi2Se3 film as a function of the Fermi level is
shown in Figure 2a. There are four zT peaks denoted by P1−
P4, among which P1 (P4) is located away from the VBE
(CBE) while P2 (P3) is located near the VBE (CBE).
Remarkably the TE figure of merit reaches a very high value of
zT ∼ 2.1 at P3, which is 2 orders of magnitude larger than the

bulk value of ∼0.03.34 This zT value is even larger than those
of most good TE materials. The encouragingly high zT clearly
demonstrates the capability on improving the TE performance
by topological insulator thin films. Moreover, the typical Fermi
level of topological insulator Bi2Se3 is close to the CBE, which
makes the P3 energy with large zT highly feasible. Around P1
or P4 energy, the conduction carriers are mostly of the SLS
type, while, around P2 or P3 energy, both the LLS and the SLS
carriers are significant to the TE performance. The zT peak
values of P2 and P3 are much greater than those of P1 and P4,
indicating the importance of the coexistence of both the LLS
and SLS carriers. Hereafter we will mainly focus on P2 and P3,
and we may only discuss the P3 case because the discussion is
similar for the P2 case.
Figure 2b shows the Seebeck coefficient as a function of the

Fermi level (Ef). Similar to the typical semiconductor cases, the
SLS Seebeck coefficient SSLS is negative for n-type doping (Ef
≳ Ec) and positive for p-type doping (Ef ≲ Ev). The trend of
the Seebeck coefficients can be comprehended by rewriting eq
6 in Method as

S
E E

eTi
if=

− ⟨ ⟩
(2)

where

( )
( )

E
Ed

d
i

f

f
i

i

∫

∫

ε

ε
⟨ ⟩ =

− Σ

− Σ

ε

ε

Δ
∂
∂

Δ
∂
∂ (3)

is the average energy over the dimensionless differential
conductivity (DDC) (−∂f/∂ε)Σ, ε = E/kBT is the reduced
energy, and Δi=LLS (SLS) denotes the LLS (SLS) energy region.
Equation 2 shows the Seebeck coefficient is proportional to the

Figure 2. Room-temperature thermoelectric parameters of the 8 QL Bi2Se3 as functions of the Fermi level. (a) Figure of merit zT. The yellow
region indicates the bulk band gap. P1−4 denote the four peak energies of zT. (b) Total Seebeck coefficient S and the LLS (SLS) Seebeck
coefficient SLLS (SSLS). (c) Ratio of σ to the total (electronic) thermal sheet conductance κ (κe). The horizontal dashed line indicates the value given
by the Wiedemann−Franz law. (d) Total electrical sheet conductance σ and the LLS (SLS) conductance σLLS (σSLS). (e) Electronic thermal
conductance κe, the LLS (SLS) contribution κLLS (κSLS), and the LLS−SLS interaction κint component. The relaxation times of the LLSs and the
SLSs are respectively set as 230 and 1 fs. The vertical dashed lines in panels b−e indicate the P2 and P3 energies.
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difference between the DDC averaged energy and the Fermi
level. For n-type (p-type) doping, almost all the conduction
carriers and hence the ⟨E⟩SLS are slightly higher (lower) than
the CBE (VBE) so that the magnitude of SSLS raises as the
Fermi level moves toward the midgap. Due to the bipolar
effect, the magnitude of the SSLS reduces near the middle of the
gap,40 resulting in the oscillating curve shown in Figure 2b. On
the other hand, the LLS Seebeck coefficient SLLS generally has
an opposite sign from that of SSLS because the SLS and the LLS
conduction carriers distribute at different sides of the Fermi
level. The magnitude of the LLS Seebeck coefficient increases
as the Fermi level moves away from the LLS energy region.
This can be understood by considering eq 2 with the fact that
the ⟨E⟩LLS is located in the LLS energy region. As mentioned
previously, the Seebeck coefficient is a conductance-weighted
average of the LLS and the SLS Seebeck coefficients. With τSLS
≪ τLLS in the present case, the Seebeck coefficient is nearly
equal to SLLS in the LLS energy region (yellow shaded), while
it approaches SSLS in the SLS energy region (white shaded)
above 0.5 eV. At P3 (P2) the resultant Seebeck coefficient is
nearly the same as the SLLS with the magnitude of 0.21 (0.16)
mV/K. This is slightly larger than the typical value of ∼0.17
mV/K (i.e., 2kB/e) for good TE materials without losing the
conductivity too much.
Figure 3a shows the schematic diagrams for normal and

anomalous Seebeck effects. For most metals, the transport
distribution function Σ is nearly a constant within the Fermi
window. Thus, the DDC averaged energy ⟨E⟩ (eq 3) is very
close to Ef, resulting in the normal Seebeck effect with a small
negative Seebeck coefficient (|S| ≪ kB/e). As for TI thin films,
the in-gap TSS, i.e., LLS, carriers well below Ef dominate the
electronic transport, while the strong scattering among SLS
carriers suppresses the transport around Ef. This acts effectively
as an energy filter over carriers enhancing the difference
between ⟨E⟩ and Ef, and hence leads to the anomalous Seebeck
effect with a large positive Seebeck coefficient (S ≳ kB/e).
The ratio of the electrical conductance to the electronic

thermal conductance σ/κe as a function of the Fermi level is
shown in Figure 2c. It is normalized in unit of RWF = 3e2/
π2kB

2T given by the Wiedemann−Franz law41 as indicated by
the horizontal dashed line. In general the Wiedemann−Franz
law is approximately applicable (i.e., σ/κe ∼ RWF). Nevertheless
the ratio strongly fluctuates near the band edges with a
maximum value of about 3 RWF around P3 much larger than
unity as predicted by the Wiedemann−Franz law. This is

excellent for high TE efficiency that one can take advantage of.
As analyzed in Method, the ratio σ/κe can be approximated by

R
k T k T
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≈ +
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″

(4)

where the first term is just the Wiedemann−Franz law. In the
present case the higher order terms are significant because the
relaxation time of the electrons near the band edge and the
corresponding dimensionless transport distribution function42

(see Method) vary rapidly with energy. In the energy region
slightly below the CBE, the electrical conductance decreases
rapidly with energy. The second term becomes significant, and
the ratio σ/κe increases to a value much larger than RWF. For
the energy region higher than P3, the dominant conduction
carriers changes from the LLS to the SLS types, and the sign of
the σ′ changes from negative to positive. The decreasing
magnitude of σ′ with a considerable positive σ″ thus leads σ/κe
to a much smaller value than RWF.
The Wiedemann−Franz law violation can be understood by

simplifying the ratio σ/κe from eqs 6 and 8 in Method as

R
3e

2
WFσ

κ
π

δ
=

(5)

where the variance δ = ⟨ε2⟩ − ⟨ε⟩2 indicates the DDC
broadening along the reduced energy ε (eq 3). Note that here
δ is the only factor determining the violation of the
Wiedemann−Franz law. For most cases as depicted in the
left part of Figure 3b, the transport distribution function (Σ) is
insensitive to energy around Ef, and the DDC profile ((−∂f/
∂ε)Σ) is nearly the same as that of the Fermi window function
(−∂f/∂ε). The variance δ ≈ π2/3 simply leads to the
Wiedemann−Franz law: σ/κe ≈ RWF. As for TI thin films
shown in the middle part of Figure 3b, the large relaxation time
difference between LLSs and SLSs strongly reduces the DDC
profile to nearly zero when ε > εc. The typical condition Ef −
Ec ≳ kBT in TIs leads the DDC close to an exponential decay
function below εc. Thus, the nearly unity DDC variance δ
results in the ratio σ/κe approximately 3 times larger than RWF.
On the other hand, shown in the right part of Figure 3b, the
SLSs below VBE truncate the DDC tail and result in the
narrow DDC profile within the reduced gap εg, leading to a
higher σ/κe ratio. As discussed later, the ratio σ/κe is further
enhanced at high temperatures because of the suppressed εg
given by the inverse dependence of temperature (εg = Eg/kBT).

Figure 3. Schematic diagram for the anomalous Seebeck effect and the Wiedemann−Franz law violation. (a) Comparison between normal and
anomalous Seebeck effects. (b) DDC profiles (−∂f/∂ε)Σ under (left) and beyond (middle and right) the WF law. εc (εv) is Ec(Ev)/kBT, Ec (Ev) the
CBE (VBE), and εg = εc − εv the reduced energy gap.
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Figure 2d shows the electrical sheet conductance as a
function of the Fermi level. As mentioned previously, the
relaxation time of the in-gap TSSs is about 2 orders of
magnitude longer than that of the bulk states. A high LLS
electrical conductance σLLS can thus be created. Within the
bulk band gap, the total conductance is nearly equal to the LLS
conductance due to the lack of SLS carriers. The conductance
increases with the Fermi level up to the maximum value at 65
meV below the CBE because of the increasing LLS density of
states (DOS). It then decreases because of the reduced

number of LLS conduction carriers regardless of the increase
in that of the SLSs. When the Fermi level locates at the P3
energy (42 meV above CBE), the conduction carrier number
of the SLSs is much larger than that of the LLSs. Nevertheless,
the total conductance is still mainly contributed from the LLS
conductance σLLS because of the large relaxation time of the
LLSs. Above 0.5 eV the SLS carriers dominate the transport
property; thus, the total conductance is nearly equal to the SLS
conductance.

Figure 4. Thermoelectric parameters of the 8 QL Bi2Se3 at room temperature T = 300 K. (a−e) Thermoelectric parameters as functions of the
Fermi level with the SLS relaxation time τSLS = 1 fs and (k−o) τSLS = 0.2 fs. The vertical dashed lines in panels a−e and k−o indicate the
corresponding P3 energies. The reduced τSLS = 0.2 fs causes a noticeable blue shift of P3 energy in panel k. In panels a and k, zT1 = 2.1 and zT3 =
2.8 are, respectively, the zT peak values at P3 for τSLS = 1 fs and τSLS = 0.2 fs cases. (f−j) Evolutions of thermoelectric parameters as functions of
SLS relaxation time with the Fermi level at 0.33 eV. The P3 energy for τSLS = 1 fs. The value of zT2 in panels f and k is 2.7.

Figure 5. Temperature-dependence of TE parameters of the 8 QL Bi2Se3. (a) Figure of merit zT as a function of temperature. zT1 (zT3) is the P3
figure of merit for τSLS = 1 fs (τSLS = 0.2 fs). zT2 is for τSLS = 0.2 fs while the Fermi level is set at the P3 energy of zT1. (b) Ratios of electrical-to-
thermal conductance and (c) Seebeck coefficient as a function of temperature. (d−f) Figure of merit as a function of Fermi level for (d) T = 100 K,
(e) T = 300 K, and (f) T = 700 K.
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As analyzed in Method, the interaction between LLS and
SLS carriers causes an additional thermal conductance term
κint. This term is significant when the SLS conductance is
comparable to the LLS conductance. Interesting effects can be
seen in Figure 2e, in which κint shows two bumps larger than
both the κLLS and the κSLS around Ef = −0.05 and 0.4 eV due to
the LLS−SLS interaction. This is also the reason why the ratio
σ/κe exhibits two minimum values at the corresponding
energies.
Further Enhancement by Shortening the SLS

Relaxation Time. The TE performance can be further
enhanced by introducing defects in the bulk-like middle layers
to reduce the SLS relaxation time without changing the LLS
relaxation time. Figure 4 demonstrates the strengthened TE
parameters at temperature T = 300 K by shortening τSLS from
1 fs (Figure 4a−e) to 0.2 fs (Figure 4k−o) and their evolutions
(Figure 4f−j). The remarkable increase in the figure of merit at
P3 energy from zT1 = 2.1 (Figure 4a) to zT2 = 2.7 (Figure
4f,k) are clearly shown. This is accomplished by the notable
growing σ/κe ratio (Figure 4i) associated with the slightly
increasing Seebeck coefficient (Figure 4j) at P3. In the short
τSLS = 0.2 fs limit, even stronger violation of the Wiedemann−
Franz law can be seen in Figure 4d,i,n. The maximum ratio
over 3 times larger than the value expected from the
Wiedemann−Franz law plays the crucial role on boosting the
figure of merit presented in Figure 4f. The origin of this
extraordinarily high σ/κe ratio at P3 energy is the prominent
reduction in κint and therefore κe (Figure 4c,h,m) due to the
shortened τSLS = 0.2 fs. On the other hand, there is no
corresponding LLS−SLS interaction counterpart electrical
conductance. The SLS conductance remains negligible as
shown in Figure 4b,g,l. This diminished σSLS is the source of
the slightly raised Seebeck coefficient (Figure 4j) according to
eq 16 (Method) under the circumstances that the SLLS and SSLS

remain the same with τSLS = 2 or 0.2 fs (Figure 4e,o). Finally
the reduction of the SLS relaxation time also results in the blue
shift of the P3 energy causing a further enhancement of the
figure of merit to zT3 = 2.8 (Figure 4k).

Temperature Dependence of the TE Performance.
The temperature dependence of the TE parameters is an
important factor in realistic applications. In general, the figure
of merit increases with temperature, reaches its maximum, and
then decreases at high temperature. As illustrated in Figure 5a,
our zT1 curve for undefected Bi2Se3 8 QL thin film increases
from 1.1 at 100 K to 2.1 at 300 K with the maximum value of
2.2 around 400 K. This figure of merit curve is indeed excellent
as compared with other good TE materials. Not only the
room-temperature TE efficiency is remarkably high but also
can be made better at higher temperatures. One can achieve a
better zT2 curve and an even higher blue-shifted zT3
performance by proper defects with the maxima zT 3.4 and
3.9 located at 600 and 700 K, respectively. Detailed zT spectra
at 100, 300, and 700 K are depicted in Figure 5d−f, among
which Figure 5f shows the best zT curve obtained in this work.
In addition, the larger zT spectral width at higher temperatures
yields a wider energy window for experimentally tuning the
Fermi level. Even at room temperature, an excellent zT value
ranging from 2.1 (zT1) to 2.8 (zT3) can be reached if τSLS is
reduced from 1 fs (undefected) to 0.2 fs (defected). The
enhancement by the defects in the bulk-like middle layers
(zT2, zT3) is weak at low temperature, significant at room
temperature, and more pronounced at high temperature. As
mentioned previously, to achieve high TE efficiency over a
wide temperature range using a single material remains a great
challenge.3,8 Such outstanding TE performance of Bi2Se3 thin
films over a wide temperature range provides an ideal solution
to this issue. Supporting Information Section SVI demonstrates
that the corresponding TE device efficiency based on Bi2Se3

Figure 6. Thickness dependence of the figure of merit in the Bi2Se3 thin films at room temperature. (a) Figure of merit as a function of Fermi level
for the films of different thickness. (b) Same as panel a except that the lattice thermal conductance of all the films is set at the value of the 8 QL
film. The relaxation time of the LLSs (SLSs) in panels a and b is 230 fs (1 fs). (c) Figure of merit of the 5 QL film at temperature T = 300 K with
different τLLS as a function of the Fermi level. Blue dashed curve with τLLS = 230 fs is highly unlikely while the green curve with τLLS = 100 fs is more
realistic for 5 QL film. (d) zT maximum of the 5 QL film at temperature T = 300 K as a function of the LLS relaxation time for n-type (p-type)
doping.
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thin films can be higher than 35% of the Carnot efficiency
operating over a wide temperature range with ΔT ∼ 600 K,43

which is much larger than 24% of typical good (zT ∼ 1) TE
materials, for example Bi2Te3, over ΔT ∼ 300 K.3,8

The ratio σ/κ in unit of RWF overall increases with
temperature as shown in Figure 5b. This is the reason why
at low temperatures zT increases with increasing temperature.
At low temperatures, the thermal conductance mainly comes
from its lattice component causing the ratio σ/κ much smaller
than one RWF. Because κL (κe) decreases (increases) with
temperature, σ/κ increases and approaches its upper bound σ/
κe as discussed in Supporting Information Section SII. The σ/κ
ratio is therefore increasing along with temperature as shown
in Figure 5b. In addition, the ratio σ(zT2)/κ(zT2) can be
significantly larger than 3RWF when T > 700 K. The σ(zT2)/
κe
(zT2) and the maximum σ/κe, as shown in Figures S2 and S3,
can be ∼5 times larger than the RWF, indicating that a
considerable portion of DDC profile is cut by the SLSs below
VBE as discussed previously. On the other hand, the
magnitude of the Seebeck coefficient (Figure 5c) decreases
with temperature above 300 K because of the T term in the
denominator of eq 2. As a result, the zT curves (Figure 5a)
raise at low temperature and decline at high temperature with
the maximum values significantly above the room temperature
(see Supporting Information section SII for detailed
discussion).
Thickness Dependence of the TE Performance. Figure

6a shows the figure of merit of the 7, 8, and 10 QL Bi2Se3 thin
films at room temperature. The figure of merit at P2 and P3
decreases with the increasing film thickness significantly. To
resolve the origin of the thickness dependence of zT, we depict
in Figure 6b these zT curves using the same lattice thermal
conductance κL of the 8 QL film for all three cases. The similar
zT peak heights in Figure 6b indicate that the better TE
performance in thinner films (Figure 6a) is mainly due to the
decreasing lattice thermal conductance κL in thinner films.
However, for thicker films, it is easier to achieve the lower SLS
relaxation time and the higher TE performance by introducing
defects into the middle layers as mentioned earlier. Therefore,
the optimized film thickness would be the thinnest film that
one can introduce defects into the middle bulk-like layers,
while the film is still thicker than 6 QLs as discussed below.
For thinner Bi2Se3 films less than 6 QLs, the LLS relaxation

time is dramatically reduced by the scattering between the
TSSs on the opposite sides because the typical decay length of
the TSSs is about 3 QLs. Introducing defects into the thin film
will significantly reduce not only the SLS relaxation time τSLS
but also the LLS relaxation time τLLS. Figure 6c shows the
figure of merit of the 5 QL Bi2Se3 thin film for different τLLS at
temperature T = 300 K. The long LLS relaxation time of τLLS =
230 fs given from the ideal nonoverlap TSSs for thicker films is
highly unlikely for the 5 QL case and is thus depicted in a blue
dashed curve. The significantly suppressed green zT curve with
a smaller maximum value of 1.7 given from τLLS of 100 fs is
much more realistic for 5 QL Bi2Se3. Figure 6d shows the
corresponding zT maximum at P3, P4 (n-type) and P2, P1 (p-
type) as a function of the LLS relaxation time. In general the
figure of merit decreases with decreasing LLS relaxation time.
For n-type doping, the zT maximum reduces from 3.2 to 0.04
when the LLS relaxation time decreases from 230 to 5 fs.
Similar behavior can also be seen for the p-type doping. If we
further decrease the LLS relaxation time, then the figure of

merit at P3 (P2) would be smaller than that at P4 (P1) as
shown in Figure 6d.

■ CONCLUSIONS

In summary, we investigate the TE properties of the Bi2Se3
thin film through first-principles calculations and the
Boltzmann transport theory. With suitable film thickness
slightly larger than 6 QLs that the coupling between the TSSs
on the opposite sides of the film is negligible, the large-angle
scattering is strongly suppressed and the relaxation time of the
in-gap TSSs can be hundreds of times longer than that of the
bulk states. The strong difference in the relaxation time leads
to a high electrical- to electronic thermal-conductance ratio
about 3 times larger than the value given by the Wiedemann−
Franz law, and a large Seebeck coefficient as well. These
combined effects thus give rise to a greatly improved figure of
merit over a wide temperature range in Bi2Se3 thin film with zT
∼ 2.1 at room temperature. The TE performance can be
further enhanced by reducing the bulk state relaxation time
without changing the in-gap TSS one through introducing
defects in the bulk-like middle layers. This enhancement is
prominent especially at high temperature. For thicker (≥10
QLs) films, the figure of merit decreases due to the increasing
thermal conductance, while for thinner (≤6 QLs) films the
significant coupling between TSSs greatly deteriorates the TE
performance. The optimal film thickness is approximately 7−
10 QLs with suitable defects in the bulk-like middle layers.
Although we only consider the Bi2Se3 thin film, the excellent
TE performance caused by the coexistence of long and short
lifetime conduction carriers should be seen in other TI thin
films and nanostructures of different morphologies. Exper-
imentally, ∼13 times zT enhancement has been observed in
the Bi1.5Sb0.5Te1.7Se1.3 nanowire in comparison with its bulk
specimen.44 We believe the unconventional TE behaviors and
high TE performances demonstrated in this work can be
observed in nanostructures of variant morphologies such as
that reported in ref 44.

■ METHOD
Electronic Structure. The electronic structure is calculated

through the projector augmented wave (PAW) approach within the
framework of density functional theory (DFT) as implemented in the
Vienna Ab initio Simulation Package (VASP).45−47 The exchange−
correlation is described in the Perdew−Burke−Ernzerhof (PBE) form
of generalized gradient approximation (GGA).48,49 The spin−orbit
coupling is taken into account. The 13 × 13 × 1 Monkhorst−Pack
mesh is used for k-point sampling within the Brillouin zone. The
cutoff energy for plane wave basis is set as 450 eV. The energy
convergence threshold is set to 10−9 eV in the self-consistent
calculation. For structure relaxation, the van der Waals interactions
between two adjacent quintuple layers are included using the DFT-D3
method with Becke−Jonson damping.50,51 All the internal atomic
coordinates and the lattice constant are relaxed until the magnitude of
the force acting on all atoms is less than 0.5 meV/Å.

Transport Properties. For the thin film in which the applied field
is along the in-plane direction, the figure of merit can be expressed by
eq 1, where σ is the electrical sheet conductance and κ the thermal
sheet conductance containing the electronic κe and lattice κL parts.
Except for the lattice thermal conductance κL that we calculate
through the Callaway’s model as will be discussed later, all the TE
parameters can be obtained from the Boltzmann transport equation
with the relaxation time approximation based on our codes. They can
be expressed as
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where e is the elementary charge, kB the Boltzmann constant, and ℏ
the reduced Planck constant. In is a dimensionless integral which can
be written as
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where f 0 = 1/[exp (ε − εf) + 1] is the Fermi−Dirac distribution
function, εf = Ef/kBT the reduced Fermi level, and Ef the Fermi level.
Σ is the dimensionless transport distribution function,42 which can be
expressed as

k E E v
(2 )

d ( )k k k2
2 2∫π

δ τΣ = ℏ −
(10)

where Ek is the electronic band structure obtained from the DFT
calculations, vk the group velocity in the direction of the applied field,
and τk the relaxation time.
The lattice thermal conductance κL can be obtained through

Callaway’s model. It can be expressed as52,53
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where d is the film thickness, vs the sound velocity, TD the Debye
temperature, y = ℏω/kBT the dimensionless parameter proportional
to the phonon frequency ω. The τc is the phonon scattering relaxation
time, which can be written as
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where A = 9.42 × 10−42 (s3), B = 7.78 × 10−18 (sK−1), and C = 2.8 are
parameters independent of temperature given from ref 53. The three
terms of eq 12 represent, respectively, the boundary scattering, the
point defect (Rayleigh) scattering, and the phonon−phonon
scattering. In ref 53, the Bi2Se3 specimens are single crystals without
intentionally introduced defects. Therefore, our lattice thermal
conductance calculated from parameters of ref 53 should be
considered as the upper bound of that in our defected model. The
overestimated lattice thermal conductance would lead to an
underestimation of our TE performance. By introducing defects
into the bulk-like middle layers, the defect-induced lattice thermal
conductance suppression would further enhance our presented TE
performance.
Transport Properties Based on the Dual Relaxation Time

Model. To calculate the transport properties for multiple channels
LLSs and SLSs, we adopt the dual relaxation time model, which is a
generalization of the conventional constant relaxation time approx-
imation.30 In this model, the relaxation times τLLS and τSLS are two
constants. The integral In is divided into the LLS part In

LLS and the SLS
part In

SLS. Then we can define the LLS (SLS) electrical conductance
σLLS (σSLS), the LLS (SLS) Seebeck coefficient SLLS (SSLS), and the
LLS (SLS) electronic thermal conductance κLLS (κSLS) by the
equations the same as eqs 6−8, where the integral is replaced by
the In

LLS (In
SLS). According to this definition, the electrical conductance

is the sum of the LLS and the SLS conductances,40

LLS SLSσ σ σ= + (13)

The electronic thermal conductance, unlike the case of the electrical
conductance, is not merely the sum of the LLS and the SLS
contributions. It can be expressed as

e LLS SLS intκ κ κ κ= + + (14)

where κint is nonnegative and can be written as
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The cause of κint is similar to that in the bipolar effect,40 in which
additional thermal conductance appears due to the interaction
between electrons and holes. In the present case, the κint is caused
by the interaction between the LLS carriers and the SLS carriers.

On the other hand, the Seebeck coefficient is a conductance-
weighted average of the Seebeck coefficients associated with the two
type of carriers,

S
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Wiedemann−Franz Law and the Higher Order Terms. The
Wiedemann−Franz law can be derived by applying the Sommerfeld
expansion on eq 9 and retaining the lowest nonvanishing order.41 By
taking into account the higher order terms and replacing Σ with
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electronic thermal conductance σ/κe can be approximated by
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where the prime denotes the derivative with respect to Ef. Here the
first term is just the Wiedemann−Franz law.
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