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Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β-Ag2Se
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The topological semimetal β-Ag2Se features a Kramers-Weyl node at the origin in momentum space and a
quadruplet of spinless Weyl nodes, which are annihilated by spin-orbit coupling. We show that single-crystalline
β-Ag2Se manifests giant Shubnikov–de Haas oscillations in the longitudinal magnetoresistance, which stem
from a small electron pocket that can be driven beyond the quantum limit by a field less than 9 T. This
small electron pocket is a remainder of the spin-orbit annihilated Weyl nodes and thus encloses a Berry-phase
structure. Moreover, we observed a negative longitudinal magnetoresistance when the magnetic field is beyond
the quantum limit. Our experimental findings are complemented by thorough theoretical band-structure analyses
of this Kramers-Weyl semimetal candidate, including first-principles calculations and an effective k · p model.

DOI: 10.1103/PhysRevB.96.165148

I. INTRODUCTION

Symmetry and topology can cooperate in electronic
solids to create low-energy electronic structures with unique
properties, resembling Weyl fermions, Dirac fermions,
nodal line fermions, and many more [1–14]. The twofold
band degeneracy associated with Weyl fermions is the most
fundamental, as it is protected by translation symmetry alone
and can therefore appear at generic, low-symmetry positions
in momentum space. This is indeed the case in all so-called
band-inverted Weyl semimetals that have been confirmed
experimentally to date.

It has been shown theoretically that there exists a second
class of Weyl semimetals in which Weyl nodes are pinned
to time-reversal invariant momenta (TRIMs) in the Brillouin
zone and cannot move freely in momentum space under small
perturbations [12,15]. These Kramers-Weyl nodes appear
generically in all chiral crystals, i.e., in crystals that have a
sense of handedness by lacking any roto-inversion symmetries
[15]. In time-reversal symmetric systems, the Kramers theo-
rem enforces twofold band degeneracy at every TRIM. Spin-
orbit coupling (SOC) can in principle split the two Kramers
degenerate bands in every direction away from the TRIM,
leaving behind a Weyl cone. Roto-inversion and general non-
symmorphic symmetries may prevent the spin-orbit-induced
lifting of the band degeneracies along certain directions in mo-
mentum space, thereby preventing the Weyl cone formation.
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In symmorphic chiral crystals, however, every Kramers pair of
bands at every TRIM is guaranteed to host a Weyl cone. For
nonsymmorphic chiral crystals, the latter is true for a subset
of TRIMs only, which, however, always includes the � point.

Here, we present a magnetotransport study combined with
detailed analyses of the low-energy electronic structure of
β-Ag2Se (naumannite), which is among the first materials that
have been theoretically proposed to be a candidate Kramers-
Weyl semimetal. β-Ag2Se crystallizes in a nonsymmorphic
chiral structure, and the Fermi pockets are located near the �

point (k = 0), where Kramers-Weyl fermions can be expected
to reside based on the general symmetry arguments outlined
above. We show, however, that an additional set of Fermi
pockets is relevant for the low-energy electronic structure
of β-Ag2Se as well, which originates from spinless Weyl
nodes that are annihilated by SOC—a curious contrast to the
Kramers-Weyl nodes created by SOC. Our magnetotransport
measurements reach the quantum limit (QL) of these Fermi
pockets with a magnetic field as low as 3.2 T. In magnetic
fields below the QL, we observed giant Shubnikov–de Haas
(SdH) oscillations, upon which a nontrivial Berry curvature
contributed from the annihilated Weyl fermions is imprinted.
Furthermore, we observed a negative longitudinal magnetore-
sistance (LMR) in a magnetic field beyond the QL. β-Ag2Se
presents a rare example of topological semimetals in which a
negative LMR is concomitant with the QL.

II. SYMMETRY AND ELECTRONIC STRUCTURE

Before reporting the experimental results in detail, we
discuss the symmetries and electronic structure of β-Ag2Se.
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FIG. 1. Band structure of β-Ag2Se. (a) High-symmetry points in the Brillouin zone of space group P 212121. (b) Band structure without
SOC. The band crossings along the �−X and �−Y lines are spinless Weyl points with opposite chiral charge. (c) Band structure with SOC. The
spinless Weyl nodes annihilate each other when SOC is increased to the physical value. What remains of them are the characteristic extrema of
the bands that form electronlike pockets along the �−X line. In addition, the lifting of the band degeneracy leads to the formation of Kramers
Weyl points at each band crossing at the � point. Two zoomed-in panels show details on the band structure at the � point. (d) Fermi surface
maps at energy EF marked in panel (c). The green Fermi surface encloses a Kramers Weyl point, while the large SdH oscillations measured in
this work are attributed to the yellow pockets.

Naumannite crystallizes in the orthorhombic space group
19 (P 212121) with two crystallographically distinct silver
atoms and one selenium atom [16,17] (see the upper inset of
Fig. 2). Space group 19 has very low symmetry: in addition to
time-reversal, it features only three C2 screw rotations around
the principal axes: Cx

2 , C
y

2 , and Cz
2.

The low-energy band structure of β-Ag2Se arises entirely
from a pair of electron and hole bands around the � point [18].
If SOC is neglected [see Fig. 1(b)], these bands are doubly
degenerate due to spin, and they carry opposite eigenvalues
under the spinless Cx

2 and C
y

2 rotations. As a consequence,
they cannot hybridize along the �−X and �−Y lines in the
Brillouin zone. Rather, they show a pair of linear crossings
along each of these lines. These linear crossings are four
spinless Weyl cones, where those on the �−X line carry
opposite chiral charge from those on the �−Y line. When SOC
is included perturbatively, these Weyl degeneracies cannot be
lifted due to their chiral charge. Rather, each spinless Weyl

FIG. 2. Temperature-dependent resistivity of four representative
β-Ag2Se single crystals. The resistivity along the a direction is similar
to the previously reported values in polycrystalline samples with
comparable carrier density n [25]. Upper inset: unit cell and definition
of angles θ , φ, and ψ with respect to the three principal axes. Central
inset: a microscopical image of β-Ag2Se crystal, with scale 1 × 1 mm
in the background.

node splits into a pair of spinful Weyl nodes that are pinned to
the kx-ky plane. As SOC increases to the estimated physical
value in β-Ag2Se, spinful Weyl nodes that originated from
different spinless Weyl nodes annihilate in the kx-ky plane,
leaving behind an electronlike Fermi pocket along the �−X

line [Fig. 1(c)].
In addition to annihilating the band-inversion Weyl nodes,

SOC also creates Kramers-Weyl nodes located at the � point.
As a consequence, the holelike Fermi surface centered at �

is split into two sheets [Fig. 1(c)], each of which is fully
spin-polarized with a hedgehog spin structure that is pointing
toward the Weyl node on one sheet and away from the Weyl
node on the other. The hedgehog spin structure is a direct
consequence of the topological character of the Weyl node,
which is a monopole of Berry curvature in momentum space.
The presence of two Fermi pockets in this Kramers-Weyl
semimetal, where one encloses the other, obscures some
characteristics typically associated with condensed-matter re-
alizations of Weyl fermions. For example, no Fermi-arc states
[15] would appear on the surface of β-Ag2Se. On the other
hand, Kramers-Weyl systems uniquely allow us to observe
other characteristics of Weyl fermions, not only because of
their enhanced symmetry and generic appearance, but also
since the Weyl nodes are isolated in energy-momentum space.

A more detailed discussion of an effective k · p model for
the Kramers-Weyl node and the spinless Weyl nodes close to
the Fermi energy, as well as the symmetry arguments outlined
above, can be found in the Appendix.

III. CRYSTAL GROWTH, CHARACTERIZATION, AND
EXPERIMENTAL METHODS

In contrast to ample studies on polycrystalline β-Ag2Se
[19–21], there has been no report until now on macrosize
single crystals, to the best of our knowledge. Its first-order,
polymorphic structural transition at 406 K hinders large single-
crystal formation because the cubic α-phase is prone to meta-
morphosing to a multidomain polycrystalline β-phase during
cooling [22,23]. To avoid this roadblock of the structural
transition, we designed a single-crystal growth of β-Ag2Se
above 406 K via a modified self-vapor transfer method [24].

Polycrystalline Ag2Se was ground and sealed in a long
fused silica ampoule in vacuum, which was then placed in a
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TABLE I. Crystallographic data for β-Ag2Se.

Space group P 212121

a (Å) 4.3503(5)
b (Å) 7.0434(10)
c (Å) 7.6779(10)

V (Å
3
) 235.26(5)

Z 4
T (K) of data collection 180
Crystal size (mm) 0.13 × 0.06 × 0.04
Radiation Mo Kα 0.7107 Å
Collection region −3 � h � 5

−8 � k � 8
−9 � l � 7

2θ limit 3.93◦ � 2θ � 25.98◦

No. of measured reflections 461
No. of variable parameters 29
R, Rw 0.0626, 0.1503

large temperature gradient from 773 K to near room tempera-
ture in a tube furnace for a week. Single crystals of β-Ag2Se
were found near the hot zone where the temperature was
presumably about 500–600 K during the growth. The yielded
crystals have a ribbonlike shape with a flat hexagonal cross
section (central inset of Fig. 2). A close examination under
a microscope found that the crystals indeed burgeoned from
small seeds of α-phase crystals attached on the inner surface
of the ampoule. Single-crystal x-ray diffraction confirmed the
crystallographic parameters consistent with previous reports
on microsize crystals (Tables I and II). The diffraction also
revealed that the long axis of the ribbon is pointing along
the crystallographic a direction, and the large surface is
perpendicular to the b direction. Although the structural
rearrangement during the α to β phase transition has not
been ascertained yet [17], this crystal growth indicates that
the β-phase is able to solidify from saturated vapor above the
transition temperature.

These macrosized single crystals of β-Ag2Se allow for a
study of the electronic states via transport measurements with
of an influence from the scattering from defects, particularly
avoiding the grain boundary scattering in polycrystals. In
this paper, we focus on the resistivity measurements when
the current I is along the crystallographic a direction while

TABLE II. Atomic parameters and anisotropic thermal vibration
parameters for β-Ag2Se.

Atom x y z Uiso

Ag1 0.1525(4) 0.3839(3) 0.9523(3) 0.0197(6)
Ag2 0.4769(4) 0.2266(3) 0.6357(3) 0.0221(6)
Se 0.1145(5) 0.0034(3) 0.8445(3) 0.0116(6)

Uij × 100

Atom U11 U22 U33 U12 U13 U23

Ag1 2.25(10) 1.62(11) 2.03(11) −0.33(9) −0.46(8) −0.04(8)
Ag2 2.63(11) 1.49(11) 2.50(11) −0.40(8) 0.42(7) −0.63(7)
Se 1.64(10) 0.76(12) 1.07(11) 0.0 0.0 0.0

the magnetic fields are pointing along different directions.
(See the upper inset of Fig. 2 for the parametrization of
the magnetic-field direction in terms of angles relative to the
crystallographic directions.) All physical property character-
izations in low fields were performed in a Quantum Design
Physical Property measurement system (PPMS-9), adopting
the four-wire method.

IV. EXPERIMENT AND DATA ANALYSIS

A. Magnetoresistance at different temperatures

The profile of the temperature-dependent resistivity ρ(T )
for the single crystals of β-Ag2Se is characterized by a broad
hump at around 100 K (Fig. 2). This humplike feature in
ρ(T ) was also observed previously in polycrystals [25,26].
Comparing the four representative samples labeled as R1–R4,
we found that the resistivity of samples R1 and R2 from
one growth batch is an order of magnitude smaller than that
of samples R3 and R4 from a second growth batch. Hall
measurements (I ‖ a, H ‖ b) reveal that all samples are n-type
for the whole temperature range, and the carrier density is
n = 4.9 × 1019 and 2.4 × 1018 cm−3 for samples R1 and R4
at 2 K, respectively (see Table III). The n-type carriers likely
come from a small amount of deficiencies of selenium atoms,
which are commonly observed in other selenide compounds
[27]. Both R1 and R4 show a mobility μ = 1/ρne of about
1000 cm2/V s at 2 K, leading to ωCτ = μB < 1 at 9 T, where
ωC is the cyclotron frequency and τ is the scattering time.

Figures 3(a) and 3(b) show the magnetoresistance (MR
= �ρH/ρ0) of the samples R2 and R4 along the three
principal axes at different temperatures. The transverse MR
for H ‖ b and c for both samples shows a similar profile at
different temperatures: the MR crosses over from a quadratic
dependence on H at low field to a linear and unsaturated
increase up to 9 T. Weak SdH oscillations occur on the linear
background when T < 10 K and μ0H > 5 T for H ‖ b in R1
and R2 (the samples with larger n), but they are absent in R3
and R4 (the samples with lower n).

At first glance, the profile of LMR for H ‖ a for R2 seems to
be completely different from that for R4 at low temperatures.
The LMR for R2 shows strong SdH oscillations up to 9 T,
while that for R4 shows weak oscillations in low field, and
then it plummets to negative in a magnetic field stronger than
3.2 T. At higher temperatures, the negative LMR survives up to
25 K while the oscillations fade out at 10 K. The data of R2 at
different temperatures also have an LMR with SdH oscillations
and partially negative shape in high field. Even at 40 K, when
the oscillations have faded out completely, the LMR still bends
down at 7 T. All of the interesting features can only be observed
at low temperatures: the LMRs for both samples degenerate to
a small and positive signal when T > 100 K.

An analysis of the SdH oscillations for H ‖ a for different
samples sheds light on the ostensible difference of their LMRs.
We employed the Lifshitz-Onsager rule for the quantization of
the Fermi surface cross-sectional area SF in R2 and R4 as a
function of magnetic field B,

SF
h̄

eB
= 2π (N + γ ), (1)
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TABLE III. Some electrical transport parameters for samples R1–R4. SF,a,kF,a and SF,b,kF,b are determined from the SdH frequencies for
the fields along the a and b directions, respectively. EF and vF are obtained from the T -dependent amplitude of oscillations for the field along
the a direction. Blank entries (N/A) signify that the respective quantities have not been measured or observed.

n SF,a kF,a γ m∗ EF vF SF,b kF,b

(cm−3) (T) (Å
−1

) (me) (meV) (105 ms−1) (T) (Å
−1

)

R1 4.9 × 1019 13.3 0.02 −0.14 ± 0.04 0.1 30 2.3 49 0.039
R2 8.1 0.016 −0.18 ± 0.07 0.075 27 2.5 36 0.033
R3 4.7 0.012 −0.17 ± 0.01 N/A N/A
R4 2.4 × 1018 3.8 0.011 −0.18 ± 0.01 0.064 18 2.2 N/A N/A

where h̄ is the reduced Planck constant, e is the elementary
charge, N is the Landau-level (LL) index, and γ is the Onsager
phase. The SdH oscillations of R2 originate from a small
electron pocket with SF,a = 8.1 T, and the peaks at ±6.8 T
correspond to N = 1. For R4, the SdH oscillations originate
from an even smaller electron pocket with SF,a = 3.8 T, and a
field stronger than 3.2 T drives the system beyond the QL.

Tracing the Landau indices of the SdH oscillations, we find
that the negative part of the LMR occurs exactly as long as the
system is beyond the QL. From this point of view, the LMRs
of R2 and R4 indeed behave similarly if we scale them with
respect to the corresponding SF. We can also conclude that the
negative LMR is not a part of the SdH oscillations for all the
samples because it survives at higher temperatures than that at
which the oscillations are washed out. Above the QL, the LMR
of samples R3 and R4 shows a shoulderlike anomaly around

FIG. 3. MR (�ρ/ρ0) for samples R2 (a) and R4 (b) along three
principal axes at representative temperatures. From top to bottom:
�ρxx , �ρyy , and �ρzz are for H ‖ b, c, and a, respectively. The
arrows in the lower right panel show the shoulderlike anomaly above
the QL (see more details in the text).

6 T (indicated by the arrows in Fig. 3). This anomaly is always
pegged at the fields close to N = 1/2 when it is translated to
LL indices for various samples with different SF. The nature
of this anomaly is not clear at this point.

B. Magnetoresistance at different angles

To map out the electron pockets contributing to the SdH
oscillations, we measured the MR for R2 and R4 while the
direction of the magnetic field pointed along angles deviating
from the three principal axes at 2 K. The MR changes are small
when the direction of the field is tilted from along b to along c.
On the other hand, we observed similar patterns of MR changes
when the field is tilted from along a to along b and c. Strong
SdH oscillations in sample R2 remain pronounced for φ and
ψ < 60◦, while the negative part of MR is compensated for
by the linear part of the transversal MR when φ and ψ > 30◦
[Figs. 4(a) and 4(b)].

An analysis of the resistivity with respect to the reciprocal
of the field projection on the a axis is shown in Fig. 5(a). A clear
1/cosφ and 1/cosψ dependence up to 60◦ indicates that the
frequencies depend merely on the field component along the
a direction irrespective of whether the field was tilted toward
b or c. Such an angular dependence is characteristic of an
anisotropic ellipsoidlike Fermi pocket. The MR for R4 with a
lower oscillation frequency in tilted magnetic field changes in
the same manner. This similar angular dependence indicates
that the pockets in R4 and R2 are cognate, albeit with different
chemical potentials.

A fast Fourier transform (FFT) analysis for the field along
different directions can trace subtle changes in the frequencies
and map out the shape of the Fermi surface precisely. Angular-
dependent extremal orbits on Fermi surfaces are resolved as
the frequency peaks in the FFT in Fig. 6. Our analysis reveals
that the large frequencies for H ‖ b and c indeed stem from
the same electron pockets for H ‖ a with lower frequency.
We denote this frequency, which maps out the anisotropic
Fermi surface, by α. This result is consistent with the angular-
dependent analyses presented above.

V. DISCUSSION

A. Fermi surface

To put the above-mentioned observations in context, we
return to the band-structure calculations presented in Fig. 1.
We estimated the Fermi level (EF) by comparing the calculated
cross section of the α electron pockets with the measured
frequencies for sample R2. The Fermi level is placed at the
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FIG. 4. Anisotropic MR for sample R2 when the direction of the
field changes among three principal axes at 2 K. No symmetrization
between ±H was applied.

dashed line in Fig. 1(c), while the inferred Fermi surface is
shown in Fig. 1(d). Our samples of β-Ag2Se host a pair of small
electronlike kidney-shaped Fermi sheets originating from the
gapped spinless Weyl nodes annihilated by SOC [marked in
yellow in Fig. 1(d)]. The anisotropy ratios of the calculated
Fermi surface cross sections are 3.8 for SF,b/SF,a and 4.0 for
SF,c/SF,a. These ratios are consistent with the experimental
results shown in Table III. In addition to the electronlike
pockets, there are two large holelike Fermi sheets enclosing
the Kramers-Weyl point at � according to the band-structure
calculation [marked in green in Fig. 1(d)]. However, these hole
pockets do not show any discerning transport signatures in SdH
and Hall measurements. The absence of the contribution from
the predicted big hole pockets may be attributed to their low
mobility and large effective mass.

Further information about the electron pockets from the
spinless Weyl nodes that have been annihilated by SOC can be
deduced from the change of the SdH oscillations at different
temperatures [28,29]:

ρH = ρ0{1 + A(B,T ) cos [2π (SF/B + γ )]}, (2)

where

A(B,T ) ∝ exp

(
−2π2kBTD

h̄ωC

)
2π2kBT/h̄ωC

sinh(2π2kBT/h̄ωC)
. (3)

FIG. 5. (a) The resistivity vs 1/μ0Ha = 1/(μ0Hcosφ) and
1/(μ0Hcosψ) for R2 at 2 K. (b) The resistivity and its second
derivative vs 1/μ0Ha = 1/(μ0Hcosφ) for R4 at 2 K. The shoulderlike
anomaly at N = 1/2 is clearly resolved as a peak in the second
derivative.

In Eq. (3), TD is the Dingle temperature, kB is the Boltzmann
constant, and the cyclotron frequency ωC = eB/m∗ (where m∗
is the effective mass). Based on Eq. (2), the peak and valley
positions of ρzz are indexed as integers N and half-integers,
respectively (because 1/ρzz = σzz ∝ 1/νF, where νF is the
density of states at the Fermi level) [30]. Extrapolation of
the lines of N versus 1/μ0H for all four samples [Fig. 7(a)]
leads to the intercepts at 1/μ0H = 0 clustered around γ =
−0.15 ± 0.05, despite the fact that SF,a varies from 13.3 to
3.8 T from sample to sample. This near-zero phase shift, with
zero being the alleged value for a 3D Dirac/Weyl semimetal
[30–32], may be interpreted as an indication of a nontrivial
Berry phase. Our analyses indicate that the annihilation of
the spinless Weyl cone does not nullify Berry curvature
contributions. The effective mass m∗ = eB/ωC was obtained
from the temperature dependence of the peak amplitude at N =
1 for R2 and R4, yielding 0.075me and 0.064me, respectively
[see Fig. 7(b)]. If we assume a linear energy dispersion, we
can estimate the Fermi wave vector kF = √

2eSF/h̄, the Fermi
velocity vF = h̄kF/m∗, and the Fermi energy EF = v2

Fm
∗

(listed in Table III). The mobility derived from the SdH
oscillations is in the order of 103 cm2/V s, comparable with
that from the Hall measurements.
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FIG. 6. FFT analysis of SdH oscillations at different angles.
Dashed lines show the angular dependence of frequency α. These
extra low-field frequency peaks in (b) are ill-shaped and angle-
independent, which indicates that they should not be associated with
an actual closed cyclotron orbit in β-Ag2Se.

B. Negative longitudinal magnetoresistance

There is a caveat in the magnetotransport measurements
for bulk materials when the magnetic field and current are in
parallel [33]: an inhomogeneous distribution of the electric
current can induce a MR that is dramatically different from
the actual bulk MR of the system. The current jetting effect

FIG. 7. SdH analyses for LMR for different samples. (a) Landau
level indices for all four samples. Two open symbols present the
anomaly at N = 1/2 for R3 and R4. (b) Temperature dependence of
the amplitude of the SdH oscillations at N = 1 for R2 and R4.

FIG. 8. (a) LMR for three samples of β-Ag2Se with different
thickness taken from the same growth batch. (b) Magnetoconductance
for the three samples. The arrows indicate that a linearly dependent
magnetoconductance occurs when the field is higher than the position
of the shoulderlike anomaly at N = 1/2.

in strong magnetic fields when ωCτ = μB � 1 can induce
negative LMR in various materials, including polycrystalline
silver chalcogenide [34,35]. Such a spurious effect must be
excluded before we claim any intrinsic negative LMR in single-
crystalline β-Ag2Se.

To clarify that the current jetting effect is minor and the
observed negative LMR in our single-crystalline β-Ag2Se is
intrinsic, we tested several samples with different thickness.
Postulating that the negative LMR is merely due to a current
distribution in thickness, the measured LMR should differ
for these samples. In contrast, as shown in Fig. 8(a), the
LMR of three samples behaves very similarly, while their
thicknesses vary by one order of magnitude. Figure 8(b) shows
the magnetoconductance (σzz = 1/ρzz) for the three samples.
We observe a linear field dependence of σ for fields above the
shoulderlike anomaly in the QL.

After ruling out a current jetting effect, we try to fathom
the origin of the negative LMR in single-crystalline β-Ag2Se.
This concomitant negative part of LMR in the field range
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above the QL should stem from the ultraquantum limit of the
small electronlike pockets that originate from the spin-orbit
annihilated Weyl cones. An Adler-Bell-Jackiw anomaly can
cause a linear positive magnetoconductance in the QL for
Weyl semimetals [36]. However, a theoretical study taking
into account the disorder scattering found that the linear
magnetoconductance may also be caused by the interplay of
the Landau degeneracy and scattering if vF and τ depend
on the field [37]. In addition to topological semimetals,
a topological trivial semiconductor may also bear an H 2-
dependent magnetoconductance due to the ionized impurity
scattering in a strong magnetic field [38–40]. This complexity
in theory makes it difficult to ascribe the negative LMR in
β-Ag2Se to any cogent mechanism, based on our current
observation. Nevertheless, we comment that a negative LMR
concomitant with the QL in β-Ag2Se has rarely been reported
for any semimetal before.

C. Linear transversal magnetoresistance

Previous studies showed that polycrystalline β-Ag2Se
manifests large, linear-field-dependent, transversal MR in both
low- and high-temperature regimes [25,26]. This linear MR
remains unsaturated as a function of magnetic-field strength up
to 50 T. The origin of this unusual linear MR was interpreted as
a quantum effect of electrons attributed to a linear dispersion
at the conduction- and valence-band touching points (i.e., a
quantum MR) [41,42]. An alternative explanation is that spatial
conductivity fluctuations induce a linear MR in these strongly
inhomogeneous polycrystals [43,44]. Our measurements on
the single crystals may provide new evidence supporting
the classical effect. Our band-structure calculation and SdH
oscillations reveal that the field in which the linear MR occurs
is far less than the QL along the b and c directions, which is
the range of fields in which the presumed quantum MR would
be occurring [41,42]. It is noteworthy that the linear MR of the
polycrystals in the literature stretches to a much lower field
than what we observed for the single crystals. This difference
can be well explained by the classical effect in which the
stronger spatial conductivity fluctuations in polycrystals lead
to more palpable linear MR in a lower field.

VI. CONCLUSION

In summary, we synthesized macrosize single crystals of
the Kramers-Weyl semimetal candidate β-Ag2Se, and we
determined its fermiology in detail from SdH oscillations. The
dominant SdH signal stems from small non-spin-degenerate
and highly anisotropic Fermi surfaces of the bottom of a
gapped spinless Weyl cone. As such, these electron pockets
inherit a nonvanishing Berry curvature verified as a unified,
nontrivial Onsager phase among several samples. A negative
LMR concomitant with the QL of these small electron pockets
was observed in a strong magnetic field. Finally, we infer
that the vapor transfer growth method has great potential for
synthesizing single crystals of new materials, especially for
thermally unstable compounds.
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APPENDIX: EFFECTIVE k · p THEORY FOR SPINLESS
AND KRAMERS-WEYL POINTS

We want to derive an effective model for the two pairs
of bands near the Fermi energy of Ag2Se that exist near the
�-point of the Brillouin zone, where each pair is split by SOC.
Let us first look at the symmetries of the problem: The space
group P 212121 of Ag2Se is generated by

(x,y,z) → (
1
2 + x, 1

2 − y, − z
)

→ (−x, 1
2 + y, 1

2 − z
)

→ (
1
2 − x, − y, 1

2 + z
)
. (A1)

In the Bloch basis, the translation operators corresponding
to the nonsymmorphic part of the transformations are diagonal
in the momenta (kx,ky,kz)T = k, and therefore they do not put
constraints on the k · p Hamiltonian H (k). We are then left
with three independent C2 rotations:

C2,x k C−1
2,x = (kx, − ky, − kz)

T ,

C2,y k C−1
2,y = (−kx,ky, − kz)

T ,

C2,z k C−1
2,z = (−kx, − ky,kz)

T . (A2)

1. The fate of spinless Weyl points

We first consider the case without SOC, in which the two
pairs of bands around � remain spin-degenerate. From the
first-principles calculation, we know that they have the same
C2,z eigenvalue along the kz axis and opposite eigenvalues
under C2,x and C2,y along the kx and ky axis, respectively.
Henceforth, we can choose, without loss of generality, the
representations

R2,x = τx, R2,y = τx, R2,z = 12, (A3)

where τx,y,z are the three Pauli matrices and 12 is the 2 × 2 unit
matrix. This spinless representation obeys R2,xR2,y = R2,z, as
it should.

Spinless time-reversal symmetry is given by T = K , where
K is complex conjugation. Furthermore, we have T k T −1 =
−k, since flipping the direction of time reverses all velocities.
The most general spinless Hamiltonian that obeys both time
reversal and the three twofold rotation symmetries is, to second
order in k, given by

H0 = (
wxk

2
x + wyk

2
y + wzk

2
z − m

)
τx + akzτy + bkxkyτz.

(A4)

Note that we have neglected the term proportional to the iden-
tity matrix, which is irrelevant for the discussion of symmetry-
or topology-enforced band degeneracies. Hamiltonian (A4)
asymptotically describes an electron and a hole band. The
Hamiltonian can feature up to four spinless Weyl points at the
points in momentum space where each of the terms vanishes
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individually. For wx,wy,wz,m > 0, the first term vanishes on
an ellipsoid in momentum space. The intersections of this
ellipsoid with the kx and ky axis are the locations of the four
Weyl points. This is in agreement with the observation from
our DFT calculation, which exhibits these Weyl points if SOC
is neglected.

We will now discuss how these Weyl points are perturbed
if SOC is switched on. It is clear that due to their chiral nature,
infinitesimal perturbations cannot gap them out immediately,
but rather split them in momentum space. If the spin space is
acted on with the three Pauli matrices σx,y,z, the symmetries
are now represented as follows. Time reversal is implemented
by the operator T = Kiσy . The spinful rotation operations are
given by

R2,x = iτx ⊗ σx, R2,y = iτx ⊗ σy, R2,z = i12 ⊗ σz.

(A5)

We will only consider SOC terms up to linear order in k.
Obviously, there is no single SOC term that anticommutes
with all terms forming a Weyl cone in Hamiltonian (A4). This
is in accordance with our expectation that infinitesimal SOC
cannot gap out the Weyl nodes. The following SOC terms are
symmetry-allowed:

HSOC = λ1 τy ⊗ σz + λ2 kx12 ⊗ σx + λ3 kxτx ⊗ σx

+ λ4 kxτz ⊗ σy + λ5 ky12 ⊗ σy + λ6 kyτx ⊗ σy

+ λ7 kyτz ⊗ σx + λ8 kz12 ⊗ σz + λ9 kzτx ⊗ σ3.

(A6)

Of these, the λ2, λ5, and λ8 terms commute with the entire
Hamiltonian (A4) and, therefore, they do not per se lead to any
change in the position of the Weyl nodes, but spin-split them
in energy. The remaining terms, each on their own, have the
following impact: The λ1 term splits each of the four spinless
Weyl nodes into two Weyl nodes separated in the kz direction.
The λ3 term splits each of the two spinless Weyl nodes on the
kx axis into two Weyl nodes separated in the kx direction. The
λ4 term splits each of the two spinless Weyl nodes on the kx

axis into two Weyl nodes separated in the ky direction. The λ6

term splits each of the two spinless Weyl nodes on the ky axis
into two Weyl nodes separated in the ky direction. The λ7 term
splits each of the two spinless Weyl nodes on the ky axis into
two Weyl nodes separated in the kx direction. In summary, the
SOC terms have the potential to split each of the spinless Weyl
points into two Weyl nodes along the kx , ky , or kz direction.
Time-reversal and rotation symmetries pin the Weyl nodes to
lie in quadruplets on the high-symmetry planes kx-ky , ky-kz,
or kx-kz.

As evidenced by our first-principles calculation, however,
SOC in Ag2Se is strong enough to gap out the Weyl nodes
by annihilating them. As SOC is gradually increased, each
spinless Weyl node splits into two Weyl nodes that separate in
a way corresponding to dominant λ4 and λ7 terms in the k · p
model. When SOC reaches the physical value it has in Ag2Se,
Weyl nodes that originated from different spinless Weyl cones
have annihilated pairwise, and there is a direct gap between
the second and third bands in all of momentum space.

2. Emergence of Kramers-Weyl points

We have largely neglected the discussion of the terms
proportional to λ2, λ5, and λ8 as they commute with the
Hamiltonian (A4). They do, however, have an important effect
on the spin-splitting of an individual band: Isolated Weyl nodes
emerge in the form of Kramers degeneracies of every pair of
bands at the � point in momentum space.

To show this within a k · p expansion, we focus on a single
pair of bands only [as compared to two pairs of bands in
Hamiltonian (A4)]. The effective Hamiltonian H (k) should
be invariant under all C2 rotations, as well as time-reversal.
As for any two-dimensional matrix, we can write it as a linear
combination of the identity and σ -matrices. In an expansion
around the �-point in powers of the individual components
of k, time-reversal symmetry excludes odd powers for the
coefficient of 12 and even powers for the coefficients of the
σ -matrices. The C2 rotation symmetries imply that every
component of k has to be paired up with the same component
of σ , or with itself. To second order in k, the Hamiltonian is
then given by

H (k) = vxkx σx + vyky σy + vzkz σz

+ (
uxk

2
x + uyk

2
y + uzk

2
z

)
12. (A7)

So just by symmetry, the band structure always contains a
Weyl point at k = 0.

This result is in qualitative agreement with our DFT
calculation for Ag2Se. We can determine the coefficients from
the DFT calculation, for the lower pair of bands that cross the
Fermi level, as

vx = 0.079 eV Å, vy = 0.066 eV Å, vz = 0.020 eV Å,

ux = −14.8 eV Å
2
, uy = −2.97 eV Å

2
,

uz = −1.55 eV Å
2
. (A8)

The Chern numbers of the two Fermi surfaces are exactly
opposite, and there are no Fermi arcs visible on any surface.
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