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Three-dimensional Dirac cone carrier dynamics in Na3Bi and Cd3As2

G. S. Jenkins,1,2,* C. Lane,3 B. Barbiellini,3 A. B. Sushkov,1,2 R. L. Carey,1,2 Fengguang Liu,1,2 J. W. Krizan,4

S. K. Kushwaha,4 Q. Gibson,4 Tay-Rong Chang,5 Horng-Tay Jeng,5,6 Hsin Lin,7,8 R. J. Cava,4 A. Bansil,3 and H. D. Drew1,2

1Department of Physics, University of Maryland at College Park, College Park, Maryland 20742, USA
2Center for Nanophysics and Advanced Materials, University of Maryland at College Park, College Park, Maryland 20742, USA

3Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
4Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

5Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
6Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

7Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546
8Department of Physics, National University of Singapore, Singapore 117542

(Received 2 May 2016; revised manuscript received 6 July 2016; published 12 August 2016)

Optical measurements and band structure calculations are reported on three-dimensional Dirac materials. The
electronic properties associated with the Dirac cone are identified in the reflectivity spectra of Cd3As2 and Na3Bi
single crystals. In Na3Bi, the plasma edge is found to be strongly temperature dependent due to thermally excited
free carriers in the Dirac cone. The thermal behavior provides an estimate of the Fermi level EF = 25 meV and
the z-axis Fermi velocity vz = 0.3 eV Å associated with the heavy bismuth Dirac band. At high energies above
the �-point Lifshitz gap energy, a frequency- and temperature-independent ε2 indicative of Dirac cone interband
transitions translates into an ab-plane Fermi velocity of 3 eV Å. The observed number of IR phonons rules out the
P 63/mmc space-group symmetry but is consistent with the P 3̄c1 candidate symmetry. A plasmaron excitation is
discovered near the plasmon energy that persists over a broad range of temperature. The optical signature of the
large joint density of states arising from saddle points at � is strongly suppressed in Na3Bi, consistent with band
structure calculations that show the dipole transition-matrix elements to be weak due to the very small s-orbital
character of the Dirac bands. In Cd3As2, a distinctive peak in reflectivity due to the logarithmic divergence in
ε1 expected at the onset of Dirac cone interband transitions is identified. The center frequency of the peak shifts
with temperature quantitatively consistent with a linear dispersion and a carrier density of n = 1.3 × 1017 cm−3.
The peak width gives a measure of the Fermi-velocity anisotropy of 10%, indicating a nearly spherical Fermi
surface. The line shape gives an upper bound estimate of 7 meV for the potential fluctuation energy scale.

DOI: 10.1103/PhysRevB.94.085121

I. INTRODUCTION

Topological concepts in condensed-matter physics have
led to the realization of new states of matter [1]. Ongoing
generalizations of topological concepts continue to generate
profound discoveries. Many of the new predicted emergent
properties have been experimentally confirmed, some anal-
ogous to concepts originating in particle physics such as
the Dirac [2–11], Weyl [12], and Majorana [13] fermion.
In the condensed-matter version, Dirac fermions exist in the
valence and conduction bands of three-dimensional (3D) Dirac
semimetals, which touch at a pair of points and disperse
linearly away from the nodes. These bands derive from
fourfold-degenerate band crossings that are protected against
gapping by crystal symmetry. If either crystal inversion or
time-reversal symmetry is broken, each Dirac node splits into
a pair of opposite chirality Weyl nodes, topological objects that
act as a source or sink of Berry’s phase curvature. This topo-
logical band structure effect is analogous to opposite-polarity
magnetic monopoles residing at the nodes in momentum
space, which fundamentally alter the semiclassical equations
of motion and Maxwell’s constitutive relations [14]. Some
of the unique properties that may be exploited in potential
technological applications include Fermi-arc surface states,
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chiral pumping effects, and magnetoelectric-like effects in
plasmonics and optics in the absence of an applied field
[4–7,11,15–18].

Unlike surface probes such as photoemission and tunneling
spectroscopy, optical measurements probe bulk band structure
and carrier dynamics over a broad range of energy scales.
In many ways, optical measurements are ideal probes of the
bulk electronic properties of 3D Dirac systems. Sensitive
measurement of the free carrier response is possible due to
the low carrier densities achievable in Dirac semimetals. The
Dirac interband transitions extend down to zero frequency
as the carrier density becomes vanishingly small [18,19].
This behavior of the interband transitions gives rise to a
logarithmic singularity in the static dielectric constant. The
logarithmic divergence, analogous to the ultraviolet divergence
encountered in quantum electrodynamics, leads to charge
renormalization [16,17] and screening effects [20,21]. Another
interesting aspect of 3D Dirac systems is the strong electron-
electron interactions characterized by the ratio of the Coulomb
to kinetic energy equal to an effective fine-structure constant
e2/(�vF ε) that is substantially larger than 1 for typical
values of the Fermi velocity vF and dielectric constant ε.
This behavior is striking since the interaction strength is
independent of carrier density, and has been predicted to give
rise to plasmaron modes at finite density that could be optically
accessible [16,17,22]. Optical probes are also sensitive to
predicted signatures of the chiral anomaly as well as the
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underlying chiral nature of the Weyl states using magneto-
optical measurement schemes in zero field [17,18,23–26].

Since Na3Bi is highly reactive with air [27], no optical mea-
surements have previously been reported. Providing broad-
band optical access to samples in a cryogenic environment
while protecting them from atmospheric water and oxygen
presents substantial obstacles. The high mobility of Cd3As2

[28,29], historically known as a narrow band semiconductor
with inverted bands and nonparabolic conduction band [30],
attracted many optical studies over the last half century [31,32].
Only recently have theoretical concepts been developed pre-
dicting a pair of Dirac cones [3] and subsequent confirmation
of their existence by surface probe measurements [7–11].
Therefore, previous optical studies do not report optical effects
unique to a Dirac cone except for two very recent optical
measurements of Cd3As2. One of these studies reports a nearly
constant ε2 in the mid-IR spectral region interpreted as a Dirac
cone signature [33], while the other is a broadband cyclotron
resonance study reporting a linear band structure [34].

In this paper, the optical spectra of Cd3As2 and Na3Bi are
presented together with parallel first-principles band structure
calculations. The expected optical signatures and thermal
occupation effects in a Dirac cone pair is discussed in Sec. II.
The optical characterization of Na3Bi is reported and discussed
in Sec. III. In Sec. IV, a peak in reflectivity in Cd3As2 identifies
the onset of Dirac cone interband transitions. A summary of
results is presented in Sec. V.

II. EXPECTED OPTICAL SIGNATURES IN
DIRAC CONE SYSTEMS

A. Interband transitions

In an ideal 3D Dirac cone with the Fermi level at the node,
interband transitions occur at all frequencies and give rise to a
linear conductivity σ1 ∼ ω/vF , where vF is the Fermi velocity
and ω is the photon energy [18]. At a nonzero Fermi level, the
interband transitions are blocked by carrier occupation below
ω = 2EF . The lost interband spectral weight below 2EF gives
rise to an equal free carrier (Drude) spectral weight, thereby
satisfying the f-sum rule.

Since the complex dielectric function is given by ε =
(4π/iω)σ , the Dirac cone interband transition contribution
leads to ε2 = (1/6)Ndα

′�(ω − 2EF ) that is constant above the
transition onset, where Nd is the degeneracy of the Dirac cone,
α′ = e2/�vF is the effective fine-structure constant, and vF is
the Fermi velocity. The frequency independence of ε2 results
from cancellations that occur in Fermi’s golden rule between
the joint density of states and the dipole transition-matrix
elements for a linear dispersion [18,35].

The Kramers-Kronig transformation of the interband ε2

gives ε1 ∝ log 	2−ω2

(2EF )2−ω2 , where 	 is an energy cutoff defined
by the bandwidth. Temperature broadening of the interband
transition onset is taken into account by replacing the Heav-
iside step function in ε2 with a Fermi-distribution function
expression, which results in ε1 ∝ Re[log 	2−ω2

(2μ−ıπT )2−ω2 ], where
μ is the chemical potential and T is the temperature.

For the case of Na3Bi, two Dirac cones are separated by
δkd = ±0.1 Å−1 along the kz direction [4,5]. The conduction
and valence bands of the Dirac cones merge, forming two
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FIG. 1. (a) The model dispersion of a Dirac cone pair (k⊥ ≡ kx =
ky), which is used to numerically calculate the dielectric function
(ε = ε1 + iε2), graphed as solid red and blue lines. The Fermi level
(blue plane), EF , lies in the conduction band between the Dirac point
and the saddle point located at the � point, midway between the Dirac
nodes. Intersections of the red planes with the model dispersions
depict the initial- and final-state energies of optical transitions for
two cases: the onset of Dirac cone transitions at the Pauli-blocked
edge ω = 2EF , and transitions between the two saddle points at
the Lifshitz gap energy ω = 	ELS . In the graph, the blue dotted
horizontal line is the expected ε2 in the low-frequency limit with
the Fermi level at the Dirac node predicted by the k · p dispersion
[2] with anisotropic Fermi velocities, where vz2 = 5 eV Å � vz1

(see Appendix D). At finite frequency in the vicinity of the Pauli-
blocked edge, a highly anisotropic Fermi surface will broaden the
edge, as qualitatively depicted by the black dashed curve of ε2. In the
vicinity of the saddle points, band structure calculations show that
the dipole transition-matrix elements are suppressed, which reduces
ε2, as qualitatively shown by the black dash-dotted curve.

saddle points at the � point midway between the nodes, as de-
picted by the idealized dispersion in Fig. 1. The Fermi velocity
vF ≈ 2.5 eV Å at each Dirac node is reasonably consistent with
photoemission and transport measurements, and band structure
calculations [2,4–6,15,27,36,37]. For illustration purposes, the
Lifshitz gap at the � point is arbitrarily set at ∼4EF .

Considering this dispersion with the Fermi level set at the
Dirac node in the limit ω → 0, the two Dirac cones are well
described by the ideal case, so that ε2 = (1/6)Nd α′ ≈ 4. This
low-frequency value is depicted by the dashed blue line in
Fig. 1, providing an estimated scale of the expected interband
optical response. This scale also applies to the anisotropic
Dirac cone case derived from band structure calculations in
the low-frequency limit (see Appendix D). At nonzero values
of the Fermi level, the Pauli-blocked edge occurs at ω = 2EF ,
giving rise to a step in ε2 and a distinctive cusplike line shape
in ε1, as shown in Fig. 1.
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At higher photon energies, the nonlinearity of the bands
along kz between the nodes becomes increasingly important.
The saddle-point region gives rise to a large and rapidly
changing joint density of states as well as dipole transition-
matrix elements that strongly deviate from the linear Dirac
case. Both effects should be considered for describing the
optical response even though such modeling is numerically
difficult. By ignoring the effects of the transition-matrix
elements, the effects arising from corrections to the joint
density of states can be calculated [35]. For this simplified
case, a rendering of the features in ε is shown in Fig. 1 in the
vicinity of the saddle points. We will return below to consider
contributions from the dipole transition-matrix elements near
the saddle points.

Two main features are thus expected in the optical signal
from the Dirac cone interband transitions, one related to the
Pauli-blocked edge and the other to the high density of states
at the Lifshitz gap energy 	ELS at the � point. The magnitude
of the interband contributions to ε is therefore expected to
be in the vicinity of ∼5 based on reasonable Fermi-velocity
estimates.

B. Thermal occupation effects

In Dirac systems with relatively low Fermi level, the
temperature dependence of the chemical potential and carrier
density can be substantial. These thermal occupation effects
can therefore drive observable optical effects [38]. The Pauli-
blocked edge will thermally broaden, and shift as ω = 2μ(T ).
The free carrier (Drude weight) response will also change,
consistent with the f-sum rule.

An analytic form of the chemical potential μ in the low-T
limit is μ − EF = − 1

6∂E ln[g(EF )] (πT )2, where g is the
density of states [39]. Here the band dispersion information is
encoded via the derivative of the density of states. An isotropic
3D conduction band where the dispersion is given by E ∝ kβ

(where β = 1 for a Dirac band) results in ∂E ln[g(EF )] =
E−1

F (3 − β)/β. The chemical potential is therefore driven
away from regions of higher density of states as temperature
is increased. The Drude weight DW = ne2/m depends on the
energy dependence of both the number density n and mass
m, but for a linear dispersion the energy dependence is given

by DW = Nd
e2

6π2�3
E2

F

vF
, where Nd = 4 is the degeneracy for

a Dirac cone pair, and in the low-temperature limit we now
obtain 	DW (T )/DW (0) = − 1

3 (πT
EF

)2 [21].
Numerical solutions for the temperature dependence of

the chemical potential, carrier density, and Drude weight are
shown in Figs. 2(a)–2(c) for a Dirac cone (see Appendices
A and B). The dispersion is assumed linear with anisotropic
velocities, where vz can differ from v⊥ ≡ vx = vy (resulting
in an ellipsoidal or an egg-shaped Fermi surface described
in Appendix B), and the applied electric field is in the x-y
plane. The results shown in Figs. 2(a)–2(c) are independent
of the velocities and only depend on the Fermi energy that
is set to 25 meV. When the chemical potential is within
the half-width of the Fermi distribution function (πT/2) of
the Dirac node, copious numbers of additional electrons and
holes are thermally excited, as shown in Fig. 2(b). The Drude
weight involves the sum of responses from holes and electrons,
so that in the high-temperature limit where the chemical
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FIG. 2. A single Dirac cone is presumed to be electron-hole
symmetric with a Fermi level EF = 25 meV in the conduction band.
The chemical potential shown in (a) is numerically calculated from the
dispersion (red curve) and analytically derived in the low-temperature
limit (black dashed curve). The carrier density and Drude weight of
thermally excited carriers are shown in (b) and (c), respectively, where
the contributions from electrons (blue), holes (green), and the sum of
the two (red) are plotted. The analytic solution of the Drude weight
in the low-temperature limit is shown as the black dashed line in (c).

potential is approximately zero and constant, DW ∝ T 2. In the
low-temperature limit, the decreasing DW with temperature is
caused by the decreasing chemical potential DW ∼ μ2 ∼ −T 2

[21]. The temperature-dependent Drude weight is therefore
nonmonotonic. The minimum demarcates the point where a
substantial number of holes and electrons are thermally excited
from the valence band, μ(T ) ∼ πT/2.

III. Na3Bi RESULTS

A. Na3Bi spectra, phonons, and crystal symmetry

Single crystals of n-doped Na3Bi were prepared as in Ref.
[27]. All manipulations were performed inside a nitrogen-filled
glove box to avoid air exposure, including the mounting and
sealing of the sample inside a cryostat. The as-grown facets
are c-axis (001) oriented.

The normal-incidence reflectivity spectra of two Na3Bi
crystals at a set of temperatures are reported in Figs. 3(a) and
3(b). The largest two crystals are optically thick (opaque),
accommodate a 2.4-mm-diameter and a 1.5-mm-diameter
aperture, and are labeled as Sample 1 and Sample 2, re-
spectively. The reflection approaches unity at low frequency,
indicative of a metallic response, and phonon features are
observable throughout the far-infrared (FIR) region. The high
reflection in the range 650–1200 cm−1 is a reststrahlen band.
The screened plasma frequency is near 1300 cm−1 indicated by
a sharp edge accompanied by a reflection minimum. Features
higher in frequency are due to electronic interband transitions.
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FIG. 3. (a)–(f) Reflectivity of Na3Bi for two samples are labeled (a),(c),(e) Sample 1 and (b),(d),(f) Sample 2. The black dashed curve
in (a) is a fit to the 8 K spectra below 1400 cm−1 using the Lorentzian oscillator parameters for ε given in (j), and shown in the graph of
(i). For sample 1, a more sensitive detector was used in (c) and (e) compared with the broadband measurements reported in (a). A strongly
temperature-dependent, screened plasma edge is observed in (c) and (d). The arrows in (c) point to absorptive features (a plasmaron excitation)
that track the temperature-dependent plasma edge. (h) A graph of a reflectivity model based on the parameters in (j), except that the free carrier
response is replaced by a temperature-dependent Drude weight consistent with thermal occupation effects in a Dirac cone. The plasma edge
shifts are tracked along the red dotted lines and summarized in (g), where the edge position shifts are normalized to the low-temperature value
ω0. The green dashed model results of the plasma edge shifts are the same as those shown in (h) along the red dotted line, except with many
more temperatures represented. (e),(f) The temperature dependence of the interband transition spectral region.

The most accurately normalized spectra are from the largest
and flattest crystal, so the 8 K reflectivity spectrum of sample
1 is fit up to 1400 cm−1 to determine the free carrier and
phonon parameters. The model reflectance is generated from
the dielectric function ε = ε∞ + ∑

j 2
P j

/(ω2
0j

− ω2 − iγ ω),
where each Lorentzian oscillator represents a phonon mode
with a center frequency ω0, characteristic width γ , and strength
P . The free carrier (Drude) response corresponds to ω0 =
0, where 2πcγ = 1/τ is the inverse lifetime of the carriers,
and 2

P = 4πDW , where P is the bare (unscreened) plasma
frequency.

The modeled reflectance that best fits the spectrum also
incorporates a thin dielectric film on the Na3Bi crystal. The
best fit to the reflectivity data of sample 1 was found with
a 2-μm-thick dielectric film with an index set to n = 1.9.
The optical path length is consistent with the faint but visibly
colored interference patterns observable under magnification
from the as-cleaved samples. The thin-film model smoothly
modifies the photometrics over a very broad range, with a weak
periodic Fabry-Perot-like etalon period of 1200 cm−1. When
the thin film is removed from the model, the resulting spectrum
better resembles the spectrum of sample 2 in Fig. 3(b). The thin
dielectric is therefore attributed to a surface layer on sample
1, which is inconsequential to the results presented. The fit to
the reflectivity spectrum is shown by the dashed black curve in
Fig. 3(a), and the bulk Na3Bi parameters and associated dielec-
tric function are reported in Figs. 3(j) and 3(i), respectively.

The observed phonon spectrum is important since the
number of IR active phonon modes relates to the crystal
symmetry. The ground state of Na3Bi is currently contentious
[37]. The strongest observed phonons at 418 and 553 cm−1,
which give rise to the broad reststrahlen band, are a factor
of two larger than the predicted highest phonon frequency

from our ab initio band structure calculations that agree
with earlier studies [37]. Three candidate crystal symmetries
are analyzed using point-group analysis, and the number of
allowed acoustic, IR active, and Raman active phonons are
reported in Appendix C.

A recent x-ray study reports that Na3Bi is in the hexagonal
space group P 63/mmc [27]. The unit cell consists of two
formula units with a Na(1)-Bi honeycomb structure separated
by interstitial Na(2) atoms. The number of expected phonons is
therefore 24, of which two are expected to be IR active in the ab
plane. This is inconsistent with the nine minimum observable
oscillators reported in Fig. 3(j) necessary to describe our data,
which rules out the P 63/mmc symmetry.

A recent ab initio calculation shows that the P 3c1 and
P 63cm ground states are ∼4 meV lower than the P 63/mmc

structure. All three point-group symmetries produce nearly
the same x-ray diffraction pattern and similar Dirac cone
bands [2,37]. The P 3c1 and P 63cm structures, however,
have a distorted Na-Bi honeycomb, resulting in additional
inequivalent Na Wykoff sites. The unit cell therefore increases
from two formula units to six, and the number of phonon
modes triples. Eleven infrared active phonons in the ab plane
are expected from point-group analysis in both buckled-
hexagonal-plane symmetries. The optical spectrum is fit well
with the minimum of nine phonon oscillators, but some are
unusually broad which could imply multiple closely spaced
phonons. The optical data appear consistent with either the
P 3c1 or P 63cm structure.

However, the P 63cm symmetry has no center of inversion
and therefore cannot be a Dirac semimetal, but would rather
split into a Weyl state system with four nodes. There is
no evidence from surface probe measurements that this is
the case. Furthermore, numerical calculations show that the
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FIG. 4. (a) The calculated band structure of Na3Bi is shown for the P 3̄c1 space group. Results are very similar for the P 63cm structure. (b)
The Brillouin zone for the crystal structure in (a) is depicted with Dirac nodes marked by the two red points along � − A. (c),(d) The projected
orbital characters of the bands are shown for s, py , pz, and px orbitals along the � − A momentum direction as well as through the Dirac node
parallel to the � − M direction, denoted by �̄ − M̄ . Bands are plotted as blue lines, overlayed by dotted red lines with thickness proportional
to the weight of the orbital character. The orbital character of the bands along the �̄ − K̄ direction is very similar to that along �̄ − M̄ . Panel
(c) shows the lack of s-orbital character of the Dirac cone heavy Bi-like band as well as the lighter Na-like band in the vicinity �, which causes
the optical transition-matrix elements associated with the Lifshitz gap region to be suppressed. (e),(f) Fermi velocities of the two Dirac bands
are plotted along � − A and �̄ − M̄ for the P 3̄c1 space group; velocities for the P 63cm structure are identical. Velocity plots along �̄ − K̄

and �̄ − M̄ are similar.

P 63cm symmetry (as well as the P 63/mmc structure) may
be unstable due to the existence of imaginary phonons
[37]. Therefore, Na3Bi likely belongs to the P 3c1 space
group.

The Drude fit parameters are determined by the low-
frequency response and the plasma edge feature. Some
uncertainty is introduced since the zero-frequency Lorentzian
is not sufficiently distinguishable from low-frequency bismuth
phonons. Reasonable fits to the data give a range of Drude pa-
rameters, where γ < 15 cm−1 and 500 < P < 1000 cm−1.
The Fermi level is estimated from the plasma frequency using
a model dispersion. A Dirac cone model is described in
Appendix B that produces an elongated egg-shaped Fermi
surface. This shape approximates the Fermi surface produced
by a more realistic dispersion derived from a k · p model
with parameters that fit the Dirac cone bands obtained from
first-principles numerical band structure calculations [2]. The
Fermi level is then estimated by E =

√
3π�3vz1/NdP , where

the degeneracy Nd = 4 and vz1 is the slower of the two velocity
roots along the c axis. For vz1 = 0.5 eV Å as measured by
angle-resolved photoemission spectroscopy (ARPES) [4], the
Fermi energy ranges from 16 < EF < 34 meV, and is 25 meV
for the Drude best-fit parameter P = 746 cm−1.

The static dielectric constant is ε0 = 120+10
−30. The un-

certainty is based upon the uncertainty in P and there-
fore the uncertainty in the strength of the low-frequency
phonons.

B. Pauli-blocking and Lifshitz gap

Since Na and Bi are relatively heavy atoms, phonon features
are relegated to low frequency, well below the measured
plasma edge, as verified by our band structure calculations
[37]. Considering the estimate of the Fermi level and con-
sulting the band structure calculations in Figs. 4(a)–4(d) (our
results for the three candidate symmetries verify those of Refs.
[2] and [37]), a conservative estimate of the spectral region
where a Pauli-blocked edge may be found is between 300 and
1500 cm−1. Nearly this entire region is within the reststrahlen
band where the reflectivity is extremely sensitive to small
features in ε on the scale expected by a sharp Pauli-blocked
edge ∼5, as demonstrated by the phonon features in the
reflectivity located at 700 and 880 cm−1 produced by much
smaller associated ε features shown in Fig. 3(i). Furthermore,
the steep slope of the plasma edge and the deep minimum
in the reflectivity just above the plasma edge in the vicinity
of 1300 cm−1, where ε1 ≈ 0 and therefore Rmin ≈ (ε2/4)2,
requires ε2 < 1. An onset of Dirac cone interband transitions
anywhere below 1300 cm−1 is expected to contribute a much
larger ε2.

No discernible features in the reflectivity spectra resemble
the expected features from a Pauli-blocked edge or Lifshitz
gap shown in Fig. 1. Band structure calculations show that the
assumptions that led to these expectations must be modified.
The large anisotropy of the Dirac cone, as demonstrated along
the kz direction (� -A) in Fig. 4(c), gives rise to a wide range
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of interband transition onset frequencies for a nonzero Fermi
level. The Pauli-blocked edge, therefore, becomes broadened,
as diagrammatically represented by the black dashed line in
Fig. 1. Furthermore, band structure calculations show that
dipole transition-matrix elements are strongly modified in the
vicinity of the saddle points at �. The Dirac cone bands
in Fig. 4(c) have s and p orbital character with a strength
proportional to the size of the red dots. Allowable dipole Dirac
interband transitions therefore must involve s ↔ p transitions.
The Dirac cone bands along � − A have p orbital character,
but only one of the Dirac bands has s orbital character and it
is strongly suppressed as the � point is approached. The large
joint density of states at the � point that gave rise to the sharp
increase in ε2 in Fig. 1 is strongly modified by the diminution
of the matrix elements (see the black dot-dashed line in
Fig. 1).

C. Thermal occupation effects and electronic transitions
in the Dirac cone

1. Plasma edge and Drude weight temperature dependence

Although the Pauli-blocked edge and the Lifshitz gap
optical features are complicated by band structure anisotropy
and transition-matrix elements, the nonmonotonic temperature
dependence of the plasma edge summarized in Fig. 3(g)
encodes Dirac cone information. The strength of the zero-
frequency oscillator in the dielectric function relates to the
Drude weight, DW = 2

P /4π . A decrease in Drude weight
shifts the zero of ε1, and therefore the plasma edge, to
lower frequency. The resemblance between the temperature
dependence of the plasma edge in Fig. 3(g) and of the Drude
weight in Fig. 2(c) suggests that the plasma edge shifts
are caused by thermal occupation effects in the Dirac cone.
As mentioned previously, the results of Figs. 2(a)–2(c) are
independent of Fermi velocity for a linear dispersion, even for
a Dirac cone with anisotropic velocities, and depend only on
the Fermi level. The minimum frequency of the plasma edge
in Fig. 3(g) occurs at T ≈ 100 K. Assuming these shifts are
caused by the temperature-dependent Drude weight, the Fermi
level is estimated to be EF = 25 meV since this value gives
rise to a minimum in DW (T ) at 100 K.

This connection between thermal occupation effects in
the Dirac cone that drive the Drude weight temperature
dependence and the plasma edge shifts is verified by the
quantitative agreement of the reflectivity model results shown
in Fig. 3(h). The temperature-dependent Drude weight of
Fig. 2(c) with P 0 = 950 cm−1 is substituted into the complex
dielectric function that includes the phonons reported in
Fig. 3(j) (with the parameter ε∞ increased by 10 percent) and
the reflectivity calculated. Utilizing the results of Appendix
B that show EF =

√
3π�3vz1/NdP and substituting this

value of P 0 and EF = 25 meV, the slow root of the
dispersion which physically corresponds to the conduction
band between the nodes is found to be vz1 ≈ 0.3 eV Å. This
is a very reasonable number since vz1 ∼ v⊥/10, as shown by
band structure results in Fig. 4(e) and ARPES measurements
[4,5]. Despite some subtle differences between the measured
temperature dependence of the plasma edge of the two samples
in Figs. 3(c) and 3(d), the model results in Fig. 3(h) agree
extremely well.

The temperature dependence of μ or DW ideally contains
information associated with the large density of state region
at the saddle point as well as the degree of electron-hole
asymmetry of the Dirac bands, both of which the model
neglects. For example, if the Fermi energy were in the vicinity
of the conduction band saddle point where the density of states
rapidly increases, the factor ∂E ln[g(EF )] [in the expression
for μ(T )] would be larger than the linearly dispersing value
of 2/EF . The increase of this factor would cause the chemical
potential to decrease more quickly with temperature than
a linear dispersion. As a result, a discrepancy between the
model rate of decrease of the plasma edge and data would be
expected. Along this line, the discrepancy between the model
and sample 2 at low temperatures could be taken as evidence
that the Lifshitz point is in the vicinity of 25 meV above the
Dirac point. In principle, a low-temperature characterization
of μ(T ) or DW (T ) could be used to discern the temperature
dependence of the T 2 coefficient and therefore determine the
Lifshitz transition energy in the density of states in relation to
the Fermi level, but the exercise requires many more than four
or five low-temperature data points (below 100 K).

As mentioned already, the calculations leading to Figs.
2(a)–2(c) assume electron-hole symmetry. In a more realistic
Dirac cone pair system with asymmetric saddle points such that
|ECB

LS | � |EV B
LS |, the assumption applies near the Dirac point

where linear approximations are valid. In this case, a valence
or conduction band Fermi pocket within ±|EF | has the same
size and shape. However, the assumption breaks down when
the chemical potential and thermal half-width approach the
Lifshitz energy, μ(T ) + πT/2 ∼ ECB

LS . The low-temperature
consequences were discussed in the previous paragraph. At
high temperature, the chemical potential will be pushed
below the Dirac node. A numerical calculation with electron-
hole asymmetry such that ECB

LS ∼ 30 meV = (1/2)|EV B
LS | and

EF = 25 meV results in a chemical potential which crosses
zero at about 150 K, reaching −10 meV at 300 K. This effect on
μ(T ) lowers the temperature of the Drude weight minimum a
small amount, where μ(T ) = πT/2 gives T = 90 K, but does
not significantly affect the high-temperature Drude weight
since the thermal width becomes substantially larger than
the chemical potential. The upshot is that even fairly large
asymmetries between valence and conduction bands do not
appreciably modify the quantitative conclusions of the thermal
analysis presented in this section.

2. Interband transitions and thermal occupation of the Dirac
cone saddle point

A strong temperature dependence is observed over the
interband transition region between 1500 and 3000 cm−1.
The reflectance over this entire spectral region continually
decreases with temperature, but precipitously drops in the
temperature range between 125 and 150 K.

As mentioned previously, three crystal structures consid-
ered in this study have nearly the same ground-state energy to
within a few meV [37]. This suggests that a phase change may
occur as a function of temperature. However, the IR active
phonons show no anomalous behavior. Also, band structure
calculations were performed for the three candidate crystal
symmetries in which the lattice spacing was varied to simulate
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temperature changes. No discernible changes in the electronic
structure or orbital characters were identified that correlated
to the observed behavior.

Thermal occupation effects of a band with a large density of
states within π150 K/2 ∼ 20 meV of the chemical potential
provide a plausible explanation of the observed behavior. At
these high temperatures, the chemical potential is expected
to be near the Dirac point. Based on the band structure
calculations in Figs. 4(a)–4(d), the only conduction band that
is in the vicinity of 20 meV of the Dirac node is the Dirac
cone conduction band saddle point, which has only p-orbital
character.

A candidate valence band with s-orbital character exists
at the � point, but lies ∼750 meV below the Dirac node, as
shown in Fig. 4(c). Band structure calculations show that the
energy of this band is very sensitive to the spin-orbit coupling
strength. Decreasing the spin-orbit coupling by a factor of two
does not significantly alter the Dirac cone bands, but pushes
the s band up in energy by about a factor of two. The optical
results together with band structure calculations may therefore
provide a sensitive method to determine the spin-orbit coupling
strength.

In this picture, transitions at low temperature between
this s-character valence band and the p-character Dirac cone
conduction band give rise to allowable transitions in the
vicinity of the � point with a large joint density of states,
provided that EF < ECB

LS . As the temperature is raised and
the chemical potential lowers toward the Dirac point, these
transitions remain active until the thermal broadening is
large enough that a copious number of carriers occupy the
conduction band saddle-point region. The thermal occupation
of the final states at high temperatures will therefore suppress
these interband transitions.

The temperature dependence of these interband transitions
is only appreciable up to ∼3000 cm−1 since, away from the
� point in the Dirac conduction band along the k⊥ direction,
the final-state energy of interband transitions rapidly increases
above the scale associated with thermal occupation effects.

D. Dirac cone transitions above the Lifshitz energy

The higher-energy transitions above 3000 cm−1 are larger
than the Lifshitz gap energy where the Dirac cone pair merges
into a single Dirac cone. Over the spectral range ∼3000–
6000 cm−1, ε2 = 1.5 ± 0.2 is frequency and temperature
independent, which is derived from fitting the reflectivity using
a Kramers-Kronig constrained variational dielectric function
[40]. Since ε2 = (1/6)Ndα

′, where Nd = 2 for a single Dirac
cone, a reasonable Fermi velocity of vF ≈ 3 eV Å in the ab
plane is attained, consistent with other measurements of v⊥
[4,5,15,27].

Plasmaron feature

Figure 3(c) shows a dip feature, indicated by the arrows,
about 60 cm−1 below the plasma edge, which tracks the
temperature dependence of the plasma edge. This tracking
behavior is more clearly observed by taking the derivative
∂R/∂ω shown in Fig. 5. The low-temperature line shape of
the dip feature in reflectivity is reproduced by adding a very
small Lorentzian absorption to the total dielectric function,

ω/2πc (cm-1)
00510001

−δ
R/
δω

 (a
rb

. u
n

it
s)

Sample 1

FIG. 5. The reflectance R shown in Fig. 3(c) for sample 1 in
the vicinity of the plasma edge at a set of temperatures is plotted
as ∂R/∂ω. The curves are vertically offset for clarity. The highest
peak of each plot is associated with the plasma edge. A dip feature in
Figs. 3(c) and 3(d) below the plasma edge frequency is present in both
samples, although it is much sharper in sample 1, as highlighted by
the arrows in Fig. 3(c). The feature manifests as a peak-dip structure
in ∂R

∂ω
, like a side lobe to the plasma edge peak, that tracks the plasma

edge as it moves with temperature. The two black dashed parallel
lines are guides for the eye that show that the peak-dip plasmaron
feature tracks the plasma edge up to 100 K, and clearly persists at
200 K.

which has a characteristic width γ = 40 cm−1 and strength
P = 50 cm−1 resulting in a small peak value of only ∼0.05
in ε2. Such a tiny absorptive feature is observable only because
the total ε is small near the plasma edge.

Sample 2 shows similar behavior in Fig. 3(d), but the
suppression of the reflectivity just below the plasma edge is
much broader (as with nearly all the features of sample 2 in
comparison with sample 1), and appears as a broad sideband
shoulder in ∂R/∂ω instead of a clear peak-dip feature.

The observation of an absorption feature that tracks the ab-
plane plasma frequency strongly suggests a plasmon-coupled
excitation that is electronic in origin. A possible excitation is a
charge that couples to the plasmon density modes [41], called a
plasmaron excitation, which has recently been predicted in 3D
Dirac systems: at a finite value of the Fermi level, the Coulomb
interaction induces satellite quasiparticle peaks in the spectral
function, which form side lobes off the main quasiparticle
branch [16,17].

Plasmaron modes must be excited by a longitudinal field
component. A scattering process is required that induces
the longitudinal mode that can then couple to the c-axis
plasmon. Such a process has been observed in similar optical
measurements on bulk bismuth crystals [22,42], although the
mechanism is far from clear: impurity scattering [43] and
an electron-hole decay scenario have been proposed without
reaching a definitive conclusion [22,42].

Optically excited plasmaron excitations in 3D materials
have rarely been observed, which makes the observation in
a 3D Dirac cone system particularly interesting. In the case
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of elemental bismuth, a plasmaron excitation is observed at
a higher energy than the plasmon mode [22]. For Na3Bi, the
c-axis plasmaron excitation is observed below the ab-plane
plasmon energy. Therefore, the c-axis plasmon must be lower
in energy than the ab-plane plasmon.

The plasmon energy is determined by the pole in 1/εz and
therefore it involves a sum of many contributing terms: free
carrier (Drude) response, strength and number of IR active
phonon modes, and the high-energy interband transitions that
cumulatively determine the value of ε∞. The strength of the
c-axis phonons and ε∞ is not currently known, but can be easily
determined optically with an appropriately oriented crystal.
What is known is that the Drude weight is smaller for an
electric field along the c axis since the Fermi velocity is smaller
than v⊥, and the number of IR active phonons along the c axis is
substantially less than in the ab plane (see Appendix C). Both
effects would tend to decrease the c-axis plasmon frequency
below the ab-plane plasma edge.

Clear evidence of a collective plasmon-electronic excitation
in bismuth, and now in the 3D Dirac system Na3Bi, has been
found. Na3Bi and elemental bismuth share many characteris-
tics, such as a Dirac-like (L-point) conduction band that has
a high Fermi velocity and a small associated Fermi surface,
carrier density, and Fermi wave vector. These observations
suggest that collective plasmon-coupled excitations are per-
haps more ubiquitous, and open up the possibility of further
investigating such collective modes in the various types of
Weyl and Dirac systems.

IV. Cd3As2 SPECTRA AND PAULI-BLOCKED EDGE

Cd3As2 n-type single crystals were prepared as in Ref. [44],
and the facet was oriented normal to [112]. The largest
crystal accommodates a 0.4 mm aperture and is opaque. A
continuous-scan Fourier-transform infrared (FTIR) spectrom-
eter measured normally incident reflection.

The small size of the crystal limited throughput power,
which precluded measurements in the FIR spectral region.
The mid-IR data are reported in Figs. 6(a)–6(c) at a set
of temperatures. A strong temperature-dependent peak in
the vicinity of 1650 cm−1 is identified as the Dirac cone
Pauli-blocked edge. Band structure calculations and surface
probe measurements indicate that other bands do not contribute
at such relatively low energies [3,7–9,11]. The peak in the
low-temperature data implies a Fermi level in the vicinity of
ω/2 ∼ 100 meV.

Surface tunneling microscopy (STM) measurements and
ab initio calculations indicate that the Lifshitz gap energy
is only ∼40 meV [3,9]. In the scenario where the Fermi
energy is much larger than the Lifshitz gap, the Dirac cone
pair merges into a single Fermi pocket. ARPES, STM, and
transport measurements indicate that the bands appear very
linear in this regime [7–9,11,29] with nearly isotropic velocity
[9,29] with a single large-Dirac-cone-like dispersion.

We consider a model of reflectivity derived from a dielectric
function that includes contributions from phonons, ideal Dirac
cone interband transitions (where Nd = 2, EF = 100 meV,
and [29] vF = c/322), and a Drude weight consistent with the

interband transition parameters given by 2
P /(4π ) = 2

3π2�3
E2

F

vF
.

FIR reflectivity data from Ref. [32] is fit to derive the phonon

Model (Black)

ω/2πc (cm-1)

Δω
/ω
ο 

T (K) ω/2πc (cm-1)

(a) (b) (c)

(d)

T (K)

Model 1

Model 2

Model 3

Model 3

Data

FIG. 6. (a) The measured mid-IR data (solid colors) are shown
with the modeled reflectivity (black) that includes the fitted phonon
parameters from Ref. [32]. (b) An expanded view of the peak in
reflectivity due to the onset of Dirac cone interband transitions and
the modeled reflectivities (offset for clarity). Model 1 includes only
thermal effects. Contributions to the width in addition to the thermal
effects include potential fluctuations, shown in model 2, or continuum
of interband transition onset energies, shown in model 3. (c) The same
data is shown over a broader spectral range, offset for clarity, with
a temperature-independent feature demarcated by the gray dotted
line. (d) The temperature-dependent peak positions are fit and plotted
relative to the 7 K value ω0, expressed as 	ω/ω0, for the data
(blue dots), model 3 in (b) (black dots), and the corrected data take
into account the changing slope of the background (red dots). Error
bars represent ±σ , a standard deviation, generated from fits to the
derivative of the peak. Also shown are quadratic fits (solid lines) and
±σ confidence intervals (dotted lines) to the data and corrected data
for T � 150 K.

parameters. The model is shown in Fig. 6(a) with the mid-IR
reflectance data superimposed. The plasma edge is below our
measured frequency range due to limitations in throughput
power as a result of the small size of the sample.

By modeling several line-shape broadening effects and
comparing to the data, the origin of the distinctive line
shape can be determined. The results of three different
models are compared with the data in Fig. 6(b). Model 1:
Thermal effects broaden the Pauli-blocked edge step in ε2

via a Fermi-distribution function, which modifies ε1 via the
Kramers-Kronig relations. The resulting cusplike peak in the
reflectivity that is dominated by the logarithmic divergence
in ε1 is much too narrow to account for the data. Model 2:
Gaussian potential fluctuations are added into the step of ε2 in
conjunction with thermal broadening. The best match to the
width of the 7 K reflectivity peak is given by an amplitude
potential fluctuation root mean square (rms), �rms ∼ 26 meV.
The resulting characteristic line shape is very different from
the data. Notably, an estimate of the potential fluctuations in
Cd3As2 given in Ref. [20] is substantially smaller, �rms ∼ 4
meV (using EF = 100 meV, ε0 = 70, vF = c/322, Nd = 2,
and an assumed charged impurity density equal to the carrier
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density). Model 3: Anisotropies between the conduction and
valence bands can result in a continuum of interband transition
onset frequencies. To model this, the expected step height in
ε2 for an ideal Dirac cone is divided into a series of equal step
heights separated by equal frequency spacings. Each step is
thermally broadened. Model 3 used in Fig. 6(b) was generated
with 20 steps over a frequency range of 125 cm−1.

The strong resemblance of model 3 to the distinctive
line shape and thermal dependence of the data indicates
a continuum of onsets in the Dirac cone over an energy
range 	ωonset ≈ 15 meV. Incrementally adding in potential
fluctuation broadening effects into model 3 gradually evolves
the line shape towards model 2, but also tempers the rate
of decrease of the low-temperature peak heights to better
resemble the data. The low-temperature line shapes markedly
begin deviating from the data at �rms = 7 meV, and become
untenable by �rms = 10 meV, which sets a hard upper bound.
These values are in reasonable agreement with the theoretical
estimate, �rms ∼ 4 meV [20].

The spread in Dirac cone interband transitions 	ωonset is
caused by velocity anisotropy of the Dirac bands. Using the
ellipsoidal Fermi surface described in Appendix B, this energy
spread translates into a 10% variation of velocity, a very small
degree of anisotropy, and therefore a nearly spherical Fermi
surface. This agrees with STM, Shubnikov–de Haas (SdH),
and recent cyclotron resonance results that show a nearly
isotropic Fermi surface at high Fermi levels well above the
Lifshitz gap [9,29,34].

A shift of the peak towards lower frequency with temper-
ature is driven by the chemical potential. This relationship
is derived in Appendix A in the low-temperature limit. The
relative shift of the peak position normalized to the low-
temperature value depends only on the Fermi level, where
δω/ω0 = − 1

3 (πT
EF

)2 for a linear dispersion, which is measured
by ARPES and tunneling microscopy [7–9,11]. The peaks are
fit to determine the center frequency. The results are plotted
in Fig. 6(d) as blue dots with error bars. The temperature
dependence is fit for T � 150 K to the expected quadratic
form (blue solid plot) with confidence intervals as dashed lines.
Using the T 2 fit coefficient yields EF = 111 ± 4 meV.

Since the experimental peaks reside on a smooth noncon-
stant background, the peak positions are slightly skewed as
a function of temperature. To estimate these corrections, the
peaks of model 3, where the center of the Pauli-blocked edge
was set to a constant ω0 for all temperatures, are fit using
the same procedure as the experimental data. The centers
of peak positions determined in this way are plotted in Fig.
6(d) (black dots), appearing temperature dependent as the
peak thermally broadens. These relatively small corrections
to the peak positions are subtracted from the experimentally
determined positions and reported as red dots and error bars.
This corrected dataset is fit as before, yielding EF = 96 ± 3
meV and a carrier density of n = 1.3 × 1017 cm−3. This is
somewhat lower than for similarly grown crystals where the
carrier density corresponded to a Fermi level in the vicinity of
200 meV [9,29].

The Fermi level is about half of the interband transition
onset energy, indicating that the Dirac point is about midway
between the final state (conduction band) and initial state
(valence band), and the valence and conduction bands are more

or less symmetrical. Band structure calculations and surface
probe measurements show that the valence band is notably
heavier than the conduction band, but that the two bands are
not strongly asymmetrical [3,7,9,11].

A very weak feature present at ∼2900 cm−1 = 360 meV
does not discernably shift with temperature [see Fig. 6(c)] and
is too high in energy to be associated with the Lifshitz gap
energy. No optical signature of the Lifshitz gap is observed
over the measured spectral region. However, even if it were
within the measured range, it may not be optically measurable.
The transition-matrix elements in the vicinity of the � point
are expected to be suppressed such as in the Na3Bi case since
the Dirac band orbital characters are very similar [3].

V. CONCLUSION

In both Cd3As2 and Na3Bi, thermal occupation effects in
the Dirac cone pair play a crucial role in the optical response.
Thermal excitation of carriers changes the chemical potential
and therefore the Dirac interband transition energy as well as
the free carrier response.

In Cd3As2, the sharp Pauli-blocked edge at the onset
of Dirac cone interband transitions induces a peak in the
reflectivity with a very distinctive line shape, providing
a fingerprint of the underlying Dirac cone dispersion and
the associated logarithmic divergence in ε1. The frequency
of the Pauli-blocked edge is controlled by the chemical
potential that depends only on the power-law exponent of the
dispersion and the Fermi level in the low-temperature limit.
Our characterization of the peak location with temperature
indicates a linear Dirac cone dispersion, a number density
of n = 1.3 × 1017 cm−3, and a Fermi energy much larger
than the Lifshitz gap energy as measured by STM [9]. The
low-temperature spectral width of the peak is caused by
Fermi-velocity anisotropy that gives rise to a narrow spectral
range of Dirac cone interband transition onsets. The spectral
width of the reflection peak translates into a Fermi-velocity
anisotropy of 10%, indicating a nearly spherical Fermi surface.
The line shape is incompatible with large Gaussian broadening
effects, giving an upper-bound energy scale for potential
fluctuations of � = 7 meV.

In Na3Bi, evidence of the Dirac cone manifests in a
temperature-dependent plasma edge caused by changes in
the free carrier response. The Drude weight temperature
dependence is nonmonotonic, attaining a minimum when the
chemical potential is within ∼kT of the Dirac node. The
minimum in the temperature dependence of the plasma edge
frequency at T = 100 K is characterized only by the Fermi
level for a Dirac cone, giving EF = 25 meV. Unlike Cd3As2,
evidence of the Dirac cone in Na3Bi is not observable from the
onset of Dirac cone interband transitions. The unobservable
edge presumably reflects the large Dirac cone anisotropy,
which is consistent with band structure calculations. At
transition energies well above the Lifshitz gap where the low-
energy Dirac cone pair has merged into one large Dirac cone,
a frequency- and temperature-independent ε2 is observed. The
constant value of ε2 is a fingerprint of the Dirac dispersion that
only depends on Fermi velocity, and translates into an ab-plane
Fermi velocity of v⊥ ≈ 3 eV Å. The ground state of Na3Bi
has been reported as belonging to the P 63/mmc space-group
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symmetry, but the number of observable IR active phonons
that we observe rules this out in favor of the P 3̄c1 candidate
symmetry. Finally, we have observed a plasmaron excitation
near the plasma edge in Na3Bi, which tracks the shifting
ab-plane plasmon energy over a broad range of temperatures.

ACKNOWLEDGMENTS

The work at the University of Maryland was supported
by the U.S. Department of Energy under Grant No. ER
46741-SC0005436. The research at Princeton University was
supported by the ARO MURI on topological insulators, Grant
No. W911NF-12-1-0461 and ARO Grant No. W911NF-11-1-
0379, and the MRSEC program at the Princeton Center for
Complex Materials, Grants No. NSF-DMR-0819860 and No.
DOE DE-FG-02-05ER46200. T.R.C. and H.T.J. are supported
by the Ministry of Science and Technology, National Tsing
Hua University, and Academia Sinica, Taiwan, and they thank
NCHC, CINC-NTU, and NCTS, Taiwan for technical support.
H.L. acknowledges the Singapore National Research Founda-
tion for the support under NRF Award No. NRF-NRFF2013-
03. The work at Northeastern University was supported by
the U.S. Department of Energy (DOE), Office of Science,
Basic Energy Sciences, Grant No. DE-FG02-07ER46352, and
benefited from Northeastern University’s Advanced Scientific
Computation Center (ASCC) and the NERSC supercomputing
center through DOE Grant No. DE-AC02-05CH11231. We
thank Rolando V. Aguilar for useful conversations.

APPENDIX A: CHEMICAL POTENTIAL, DRUDE
WEIGHT, AND PAULI-BLOCKED EDGE

TEMPERATURE DEPENDENCE

The carrier density is given by n = ∫ ∞
−∞ g(E)f (E)dE,

where g(E) is the density of states and f (E) is the Fermi
distribution function. By fixing the number of carriers to the
zero-temperature value, the chemical potential μ for a given
temperature T is found by solving

∫ ∞
−∞ f (E)g(E)EdE =∫ EF

−∞ g(E)EdE.
An approximate expression for μ(T ) is derived by the

application of the Sommerfeld expansion assuming the tem-
perature is much smaller than the Fermi energy EF and the
integrand varies slowly over the energy range EF ± T , giving
μ = EF − 1

6 (πT )2 g′(EF )
g(EF ) + O(T 4), which is Eq. (2.77) in

Ref. [39]. Expressing the density of states as g = ∂n
∂k

/( ∂E
∂k

), the
carrier density as n ∝ k3, and a dispersion of the form E ∝ kβ

leads to the expression g′(E)/g(E) = E′(k)−1g′(k)/g(k) =
E−1(3 − β)/β.

The dc conductivity σ is derived in Chap. 13 of Ref. [39]
and relates to the Drude weight which becomes, after integra-
tion by parts, DW = σ/τ ∝ (1/vF )

∫
Ef (E)dE for a linear

isotropic Dirac cone. Using the Sommerfeld expansion and
substituting the expression for μ(T ) gives DW (T )/DW (0) =
1 − 1

3 (πT
EF

)2 + O(T 4), which agrees with results of Ref. [21].
We now turn to derive the relationship between the chemical

potential and the measured temperature-dependent frequency
of the Pauli-blocked edge feature observed in Cd3As2. The
optical Pauli-blocked edge frequency is given by ω(T ) =
μCB(T ) + EV B(T ) for a vertical (momentum-conserving)

transition between the final state in the conduction band at
the chemical potential μCB(T ) above the Dirac point, and an
initial state at EV B(T ) in the valence band. For Cd3As2, the
conduction band chemical potential is much larger than the
width of the Fermi-distribution function for the temperature
region of interest T � 150 K, so a negligible number of
carriers will be thermally excited from the valence band.
We approximate the conduction band energy near k = kF

by E ∝ kβ , which touches the valence band at a point. The
valence band energy near k = kF is similarly approximated by
E ∝ kβ that may have a different velocity from the conduction
band. It is then straightforward to obtain the expression
ω(T )/ω(0) = 1 − 1

6
3−β

β
(πT

EF
)2. The coefficient Cexp is a fitting

parameter found from the data δω/ω(0) = −CexpT
2. The

Fermi energy is then calculated using EF =
√

3−β

6β
π2

Cexp
, where

β = 1. Expanding EF about β = 1 to first order gives δEF

EF |β=1
≈

− 3
4δβ, so that if the dispersion tends toward superlinear

near k = kF , an estimation of EF using β = 1 tends to
overestimate EF .

APPENDIX B: EGG-SHAPED FERMI SURFACE

Consider an egg-shaped Fermi surface constructed with two
half ellipsoids, each with a different major axis along kz. The
k-space volume is then given by Vk = (4π/6)k2

⊥(kz1 + kz2).
Assume a Dirac dispersion where E = �k⊥v⊥ = �kz1vz1 =
�kz2vz2 and vz1 � vz2,v⊥. The carrier density is n =
NdVk/(2π )3, where Nd = 4 is the degeneracy for a pair
of Dirac cones. The applied electric field is assumed to
be in the x-y plane, so the plasma frequency is given by
2

P = 4πne2v2
⊥/EF . Combining these results gives EF =√

3π�3vz1/NdP . The temperature-dependent chemical po-
tential μ(T )/EF and Drude weight DW (T )/DW (0) under these
assumed anisotropic velocity conditions are exactly the same
as the isotropic Fermi-velocity case (with β = 1) derived
above in Appendix A.

The Pauli-blocked edge peak feature shown in Fig. 1 will be
broadened by 	ωonset via the velocity anisotropy α = vz1/v⊥,
where vz2 is taken to equal v⊥ for convenience. Here we derive
the relationship between 	ωonset and α. For a Fermi energy
lying in the conduction band, EF = �k⊥v⊥ = �kz1vz1 is the
final-state energy for Dirac cone interband transitions, and
the extremum of initial-state energies in the valence band is
given by EV B0 = �k⊥vz1 and EV B1 = �kz1v⊥. Note that 	ω =
EV B1 − EV B0 and the average interband transition energy is
ω̄ = EF + (1/2)(EV B1 + EV B0), which gives 	ω = EF (1 −
α2)/α and ω̄ = EF (1 + α)2/(2α). Based on experimental data
for Cd3As2, we obtain 	ω/ω̄ = 15/204, and α = 0.9.

APPENDIX C: PHONON POINT-GROUP ANALYSIS

For Na3Bi, the symmetries P 3̄c1, P 63/mmc, and P 63cm

have ground-state energies that only differ by a few meV based
on numerical calculations [37]. Phonon analysis of these three
possible symmetries are summarized in Tables I–III.
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TABLE I. Phonon analysis for space group P 3̄c1 (No. 165) with
six Na3Bi formula units per primitive cell.

Wyckoff Site
Species position symmetry Vibrational modes

Bi 6f C2 A1g + A1u + 2A2g + 2A2u + 3Eg+3Eu

Na1 2a D3 A2g + A2u + Eg + Eu

Na2 4d C3 A1g + A1u + A2g + A2u + 2Eg + 2Eu

Na3 12g C1 3A1g+3A1u+3A2g+3A2u+6Eg + 6Eu

Total: 5A1g+5A1u+7A2g+7A2u+12Eg+12Eu

Acoustic: A2u + Eu

Infrared: 6A2u(e ‖ c) + 11Eu(e ⊥ c)
Raman: 5A1g + 12Eg

Silent: 7A2g + 5A1u + 12Eu

APPENDIX D: ESTIMATE OF ε2 FROM BAND
STRUCTURE CALCULATIONS OF THE DIRAC CONE

BANDS IN THE LOW-FREQUENCY LIMIT

Here we obtain an estimate of ε2 in the low-frequency limit
based on k · p theory with fitting parameters that approximate
the first-principles Dirac dispersion. The starting point is the
formalism developed by Wang et al. [2] in which the Dirac
bands are described by a 4 × 4 leading-order Hamiltonian
around the � point. Performing an expansion about the Dirac
node such that kz ≡ k′

z − kd , where 2kd is the distance between
Dirac nodes, and keeping up to linear terms in k gives the
following Hamiltonian:

H = 2C1

√
M0

M1
kz +

⎛
⎜⎜⎝

−2
√

M0M1kz Ak+ 0 0
Ak− 2

√
M0M1kz 0 0

0 0 −2
√

M0M1kz −Ak−
0 0 −Ak+ 2

√
M0M1kz

⎞
⎟⎟⎠,

where M0,M1,C1, and A are parameters defined in
Ref. [3] based on first principles, and k± = kx ± iky .
The two 2 × 2 diagonal blocks in the Hamiltonian give
the same eigenvalue solutions to leading order in k:
E = v0kz ±

√
(vDkz)2 + (v⊥k⊥)2, where v2

D = 4M0M1,v⊥ =
A,v0 = 2C1

√
M0
M1

, and k2
⊥ = k2

x + k2
y . At k⊥ = 0, the disper-

sion along kz gives slow and fast velocity solutions, v0 ± vD ,
near the Dirac node. ARPES measurements and band structure
calculations show that the velocity associated with the heavy
Bi-like Dirac band (vz1) is much smaller than the high velocity
associated with the lighter Na-like band (vz2), so that v0 ∼ vD ,
and therefore, vD ≈ vz2/2.

In the presence of an oscillating electric field in the x-y
plane, the 4 × 4 interaction Hamiltonian contains two 2 × 2

TABLE II. Phonon analysis for space group P 63cm (No. 185)
with six Na3Bi formula units per primitive cell.

Wyckoff Site
Species position symmetry Vibrational modes

Bi 6c Cs 2A1 + A2 + B1 + 2B2 + 3E1 + 3E2

Na1 2a C3v A1 + B2 + E1 + E2

Na2 4b C3 A1 + A2 + B1 + B2 + 2E1 + 2E2

Na3 6c Cs 2A1 + A2 + B1 + 2B2 + 3E1 + 3E2

Na4 6c Cs 2A1 + A2 + B1 + 2B2 + 3E1 + 3E2

Total: 8A1 + 4A2+4B1+8B2+12E1+12E2

Acoustic: A1 + E1

Infrared: 7A1(e ‖ c) + 11E1(e ⊥ c)
Raman: 7A1 + 11E1 + 12E2

Silent: 4A2 + 4B1 + 8B2

diagonal blocks,

Hint = ±
(

0 AA±
AA∓ 0

)
,

where A± = eε±/(iω) is the vector potential and ε is the
electric field, and the upper (lower) sign applies to the upper
(lower) block. The square of the expectation value of the dipole
matrix elements is given by (ev⊥ε⊥/ω)2 and the joint density
of states is given by Nd

6π2
(�ω)3

(2�)3v2
⊥vD

. Using the Fermi’s golden

rule, the optical response is then simply obtained as [35]
ε2 = 1

6Ndα
′, where α′ = e2/�vD . ε2 is seen to be independent

of the transverse Fermi velocity v⊥, being determined solely
by the fast-velocity root of the z-component dispersion for the
case of Na3Bi where vD ≈ vz2/2.

TABLE III. Phonon analysis for space group P 63/mmc (No. 194)
with two Na3Bi formula units per primitive cell.

Wyckoff Site
Species position symmetry Vibrational modes

Bi 2c D3h A2u + B1g + E1u + E2g

Na1 2b D3h A2u + B1g + E1u + E2g

Na2 4f C3 A1g + A2u + B1g + B2u + E1g

+E1u + E2g + E2u

Total: A1g + 3A2u + 3B1g + B2u + E1g + E2g

+3E1u + 3E2u

Acoustic: A2u + E1u

Infrared: 2A2u(e ‖ c) + 2E1u(e ⊥ c)
Raman: A1g + E1g + E2g

Silent: 3B1g + B2u + 3E2u
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