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Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting
proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual inter-
actions between electrons are neglected in most studies so far and thus motivate us to investigate the role of
electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we
show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic
in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron
interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the
ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by
electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an
academic viewpoint, but also has potential applications in spintronics at nanoscale.
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I. INTRODUCTION

Graphene,1 a single hexagonal layer of carbon atoms in
two dimensions �2D�, is the building block for graphitic ma-
terials ranging from zero-dimensional �0D� fullerenes to one-
dimensional �1D� nanotubes, and also the commonly seen
three-dimensional �3D� graphite. Since it was generally be-
lieved that the two-dimensional lattice should not exist at
finite temperature, graphene had often been used as a toy
model and viewed as an academic material until its recent
discovery in laboratory.2 The honeycomb structure gives rise
to linear dispersion, making electrons and holes in graphene
massless as in relativistic theories.3,4 Therefore, most studies
focus on the electronic and transport properties arisen from
this peculiar band structure,5–9 such as the half-integer quan-
tum Hall effect5,6 due to the � Berry phase, the quantization
of minimal conductivity where carriers are almost absent5

and so on.
One of the potential applications of graphene is to realize

fast electronics at nanoscale, making graphene nanoribbons
�GNRs� a natural building block for these devices. Since the
electronic structure sensitively depends on the transverse
width and also the edge topology, there are intensive
investigations10–14 on narrow GNRs with width less than 10
nm. Although GNRs have been successfully fabricated by
lithography15 down to the widths of 20 nm, the roughness of
the edges remains large �about 5 nm or larger�. As a result,

theoretical predictions may not be applicable and limit the
fundamental and practical applications. A recent break-
through of fabricating GNRs came from chemical methods.16

It is rather remarkable that the width of the GNRs can be
fabricated in a controlled way down to 10 nm. In addition,
the edges of these GNRs are ultra smooth with possibly well-
defined zigzag or armchair shapes, suitable for building elec-
tric junctions at molecular scale.

As the transverse width shrinks, the quantum fluctuations
become important and results and/or predictions from mean-
field theories shall be checked carefully. Meanwhile, since
the open boundaries of GNR play a crucial role at nanoscale,
the interplay between the Coulomb interaction and the edge
morphology will lead to rich physics. For instance, it has
been revealed that the Coulomb interaction gives rise to edge
moments in zigzag GNR.17–19 Furthermore, Son, Cohen, and
Louie20 showed that in the presence of external electric field
in the transverse direction, the system turns half metallic
with magnetic properties controlled by the external electric
field. Their results not only show that the electronic spin
degrees of freedom can be manipulated by the electric fields,
but also bring up the possibility to explore spintronics21–23 at
the nanometer scale based on graphene.

Inspired by these discoveries, we investigate the effect of
Coulomb interaction in armchair GNR as schematically
shown in Fig. 1. Note that the edges are hydrogenated so that
the dangling � bonds are saturated and only the � bands
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remain active in low energy.20 By combining analytical
weak-coupling analysis, numerical density-matrix
renormalization-group �DMRG� method, and the first-
principles calculations, we show that armchair GNR exhibits
an interesting carrier-mediated ferromagnetism upon appro-
priate doping. Even though only � bands are active in low
energy, in appropriate doping regimes, the armchair edges
give rise to both itinerant Bloch and localized Wannier orbit-
als. As will be explained later, these localized orbitals are
direct consequences of quantum interferences in armchair
GNR and form flat bands with zero velocity. The carrier-
mediated ferromagnetism can thus be understood in two
steps: Electronic correlations in the flat band generate intrin-
sic magnetic moments first, then the itinerant Bloch electrons
mediate ferromagnetic exchange coupling among them. As a
result, the magnetic properties of armchair GNR sensitively
depend on the doping and thus can be manipulated easily by
the external electric fields.

Though the ferromagnetic state in armchair GNR stems
from the flat-band states which are partially filled, the
mechanism is different from the “flat-band ferromagnetism”
proposed by Mielke and Tasaki.24–26 The key to Mielke-
Tasaki ferromagnetism is the finite overlap of adjacent Wan-
nier orbitals in the flat band: the finite overlaps generate ex-
change coupling among these orbitals and lead to the flat-
band ferromagnetism. However, the Wannier orbital in
armchair GNR �shown in Fig. 1� has zero overlap with its
adjacent neighbors. The flat band alone only accounts for the
existence of the magnetic moments and the ferromagnetic
order sets in only when itinerant carriers are present. A simi-
lar mechanism of ferromagnetism has been argued for the
Hubbard model in a kind of frustrated lattice.27,28

In the following, we will elaborate in details how the
carrier-mediated ferromagnetism emerges �upon appropriate

doping� in the armchair GNR. In Sec. II, we start with the
Hubbard model and solve the band structure by the method
of generalized Bloch theorem. In Sec. III, we integrate out
the gapped modes and explore the ground-state properties in
weak coupling. We first show how the local moments in the
flat band form from the Coulomb interaction. We also dem-
onstrate the crucial role of itinerant carriers in dispersive
bands, which mediate the indirect exchange coupling among
the local moments and give rise to the ferromagnetic ground
state. Indeed, without those carriers, the ferromagnetism dis-
appears and only Curie-type susceptibility remains in arm-
chair GNR. In Sec. IV, we employ the technique of non-
Abelian DMRG to investigate the ferromagnetic ground state
in intermediate coupling. It is remarkable that the numerical
results agree with the weak-coupling analysis pretty well. In
Sec. V, the realistic band structure and the long-range Cou-
lomb interactions are included via the first-principles calcu-
lations. It is rather unexpected that the flat band is robust
even when the realistic band structure is taken into account.
Ferromagnetism appears around the same doping regime as
predicted by either weak-coupling or DMRG approaches. Fi-
nally, in the last section, we discuss the robustness of our
predictions and also their connections to practical experi-
ments.

II. HUBBARD MODEL FOR ARMCHAIR NANORIBBON

To understand the carrier-mediated flat-band ferromag-
netism in the armchair GNR, we start with the Hubbard
Hamiltonian,

H = − t �
�r,r��,�

�c�
†�r�c��r�� + H.c.� + U�

r
n↑�r�n↓�r� , �1�

where t is the hopping amplitude on the honeycomb network,
U�0 is the on-site repulsion, and �= ↑ ,↓ is the spin index.
The lattice points r= �x ,y ,�� are labeled by integer indices
�x ,y� in longitudinal and transverse directions and the addi-
tional sublattice index �=A ,B. The transverse integer index
y=1,2 , . . . ,Ly defines the width of the ribbon while x
=1,2 , . . . ,Lx defines the length. The sum ��r,r�� is taken only
for nearest-neighbor �NN� bonds.

The values of t reported in the literature29–31 range from
2.4–2.7 eV for nanotubes, while t�3 eV is typical in
graphites. Although an accurate value of U is not yet known
in GNRs, the estimate from polyacetylene,
U�6–10 eV,32,33 might serve as a reasonable guess. Thus,
we expect the ratio U / t to be of order one.

Let us try to obtain the band structure of the armchair
GNR within the tight-binding model first. For convenience,
we consider the infinite length Lx→� in the following. Since
the system is translational invariant along the x direction, the
hopping Hamiltonian simplifies after the partial Fourier
transformation,

c�r� =
1

	Lx
�

k

eik�x+��y��c�k,y� . �2�

We omit the spin index � for a while. The shorthand notation
y= �y ,�� is defined to label the sites within a unit cell. The
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FIG. 1. �Color online� �a� Armchair GNR of Lx=4 and Ly =5.
Open edges are present at y=1 and Ly. The solid circles and squares
represent sublattice A and B, respectively. The shaded circles show
the amplitudes of a local Wannier orbital of E= t at x=2, with op-
posite signs indicated by light/dark colors. Band structures for the
infinitely long GNR with �b� Ly =5 and �c� Ly =7 clearly show the
pair of flat bands at E= 	 t.
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geometric phases arisen from the underlying honeycomb
structure are

��y� = 2/3, for y = even and � = A ,

��y� = 0, for y = even and � = B ,

��y� = 1/6, for y = odd and � = A ,

��y� = 1/2, for y = odd and � = B . �3�

The hopping Hamiltonian simplifies to decoupled two-leg
ladders with finite length Ly labeled by momentum k in the x
direction,

Ht = �
k


†�k�H�k�
�k� , �4�

where 
�k�= �c�k ,y ;A� ,c�k ,y ;B�� is the fermion operator
for sublattices A and B and thus has 2Ly components. The
reduced hopping Hamiltonian H�k� is a 2Ly �2Ly matrix. It
is rather interesting that H�k� can be cast into supersymmet-
ric �SUSY� form34–36

H�k� = 
 0 Q†

Q 0
� . �5�

The submatrix that connects opposite sublattices is the super-
charge operator,

Q =�
t2
� t1 0 0 . . . 0

t1 t2
� t1 0 . . . 0

0 t1 t2
� t1 . . . 0

. . . . . . . .

0 0 0 0 . . . t2
�

 , �6�

where the complex hopping amplitudes are t1=−teik/6 and
t2=−teik/3. One should not be surprised by the complex hop-
ping amplitudes that come from the corresponding geometric
phases k��y�.

To solve the wave function, let us introduce a
2Ly-component spinor,

��y� = �A�y�
B�y� � , �7�

where A/B�y� are the wave functions on sublattices A /B.
Making use of the SUSY form in Eq. �5�, the coupled Harper
equations are

QA = EB, Q†B = EA. �8�

It is known that the solution for E�0 is supersymmetric and
can be solved by combining the two Harper equations to-
gether Q†QA=E2A. Once the eigenstate A is obtained, the
wave function on the other sublattice is B= 1

EQA. Thus, the
remaining task is to diagonalize the matrix Q†Q. Note that
the above trick only works for E�0 eigenstates while the
E=0 states can be obtained by finding the null space of Q
and Q† alone.

Before digging into details, we would like to make some
general remarks. It is clear that, for each solution A, we can

construct two wave functions on the other sublattice B by
two choices of eigenenergies E= 	 �E�. As a result, the en-
ergy spectrum is symmetric about E=0, and total wave func-
tions of opposite energies E= 	 �E� only differ by an overall
minus sign on one of the sublattices �but not on the other�.

With this general picture in mind, we now turn to the
explicit form of the matrix Q†Q that can be worked out by
straightforward algebra

Q†Q =�
V0 − T2 T1 T2 0 0 0 . . . 0

T1 V0 T1 T2 0 0 . . . 0

T2 T1 V0 T1 T2 0 . . . 0

0 T2 T1 V0 T1 T2 . . . 0

. . . . . . . . . .

0 0 0 0 . . . T2 T1 V0 − T2

 ,

�9�

where V0=3t2, T1=2t2 cos�k /2�, and T2= t2. This matrix re-
sembles the hopping Hamiltonian of a finite chain with the
site potential V0, nearest-neighbor hopping T1, and next-
nearest-neighbor one T2. The eigenfunction satisfies

T2�A�y + 2� + A�y − 2�� + T1�A�y + 1� + A�y − 1��

+ V0A�y� = E2A�y� , �10�

where y=1,2 , . . . ,Ly with the appropriate boundary condi-
tions

A�0� = 0, A�Ly + 1� = 0, �11�

A�− 1� = − A�1�, A�Ly + 2� = − A�Ly� . �12�

The first two boundary conditions arise from the open ends
of the effective two-leg ladder and the last two constraints
come from the change in the potential at the end sites. Note
that the usual plane-wave solutions satisfy the bulk Harper
equation in Eq. �10�. Thus, we only need to form appropriate
linear combination of these plane-wave solutions to match
the boundary conditions. In the case we study here, the
eigenstate is the simple combination of opposite momentum
states with a relative minus sign, i.e., the wave function takes
the usual sine form,

A�y� = sin�qmy� , �13�

where the magnitude of transverse momentum is quantized,
qm=m� / �Ly +1� with m=1,2 , . . . ,Ly. From the eigenstates,
it is straightforward to compute the corresponding disper-
sions for each band,

E = 	 �V0 + 2T1 cos qm + 2T2 cos 2qm�1/2

= 	 t�1 + 4 cos�k/2�cos qm + 4 cos2 qm�1/2. �14�

With the wave function on sublattice A and the energy dis-
persion, we can obtain the wave function on sublattice B by
the supercharge operator as described before. However, a
closer look would ensure us that the full wave function on
the armchair GNR is far simpler than we expected.

The simplification arises from the fact that the super-
charges Q and Q† commute. As a result, the matrix Q†Q
=QQ† share the same eigenstates as the matrices Q and Q†.
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It is straightforward to show that the wave function A�y� is
also an eigenstate of Q with complex eigenvalue,

QA = �t2
� + 2t1 cos qm�A = �E�ei��k�A, �15�

where the phase ��k�=��k ,qm� of the complex eigenvalue is

ei��k� =
t2
� + 2t1 cos qm

�E�
. �16�

Therefore, the wave function on the sublattice B is a dupli-
cate of A with a momentum-dependent phase shift,

B�y� = 	 ei��k� sin�qmy� . �17�

The 	 signs arise from the signs of the energy, correspond-
ing to antibonding and bonding bands, respectively. Finally,
after attaching appropriate renormalization factor, the full
eigenstate wave function is labeled by the quantum number
k= �k ,qm ,s�, including the longitudinal momentum k, the
transverse momentum qm and antibonding/bonding index s
= 	1. The explicit form of the wave function is

�k�y� =
1

	Ly + 1
� sin�qmy�

sei��k� sin�qmy� ,
� . �18�

Note that the dependence of the longitudinal momentum k
only appears through the relative phase ��k� between wave
functions on two sublattices. This simple analytical form of
the eigenstates allows us to map the armchair GNR to effec-
tive theory in the low-energy limit and study the correlation
effects analytically.

For the width of odd Ly, the transverse momentum goes
through the particular value qm=� /2, rendering the energy
dispersion completely flat at energy E= 	 t in the whole Bril-
louin zone. To obtain the wave function, we only need to
evaluate the phase shift, ei�F	 = �t2

�+2t1 cos�� /2�� / t=−e−ik/3.
Therefore, the wave functions for the flat bands E= 	 t are

�F	�y� =
1

	Ly + 1
� sin��y/2�

�e−ik/3 sin��y/2� � . �19�

Since all states with different momentum k are exactly de-
generate, it is possible to construct the local Wannier orbital
with the same energy,


F	�r� = �x,x0

1
	Ly + 1

� sin��y/2�
�sin��y/2� � . �20�

Note that the momentum-dependent phase shift �F	=−k /3
cancels the relative geometric phase k���y ,B�−��y ,A�� lead-
ing to extremely simple local Wannier orbital at x=x0. Re-
peatedly applying the lattice displacement operator Tx on one
Wannier orbital, all orbitals at different locations can be con-
structed. Since �Tx ,Ht�=0, all the orbitals share the same
energy and form a flat band. This is the one-dimensional
analog of the Landau-level degeneracy for two-dimensional
electrons in magnetic field. The peculiar edge topology at
nanoscale replaces the role of the magnetic field in 2D and
quenches the kinetic energy of the carriers.

At first sight, it is rather counterintuitive that the local
Wannier orbital cannot move around by quantum hopping.
The static nature is due to perfect destructive quantum inter-

ferences which make hopping amplitudes from different sites
cancel each other. Thus, the open boundaries of armchair
shape play a crucial role for the birth of the Wannier orbitals.
Furthermore, since the wave function is not zero only at odd
y coordinates �see Fig. 1�, it is clear that the adjacent orbitals
have zero overlap. Thus, the Mielke-Tasaki mechanism does
not work to couple neighboring orbitals magnetically.

Let us concentrate on the flat-band regimes E= 	 t for the
armchair GNR with odd Ly. Due to the particle-hole symme-
try for the Hubbard model, the low-energy physics is dictated
by the doping level disregarding whether it is electron or
hole doped. Thus, it is convenient to introduce the positive-
definite doping level xd���n�−1�, where �n� is the average
electron number per site. The lower and upper bounds of the
doping rate xd for the flat-band regime are obtained from the
Fermi momenta km of the dispersive bands intersecting the
flat band. For those dispersive bands, the Fermi momentum
satisfies cos�km /2�+cos�qm�=0, which leads to km=2�
−2qm, where m=Ly ,Ly −1, . . . , �Ly +3� /2: there are �Ly
−1� /2 pairs of Fermi points crossing the flat band. Thus, the
system is in the flat-band regime for xd,min�xd�xd,max,
where

xd,min =
1

�Ly
�
m

km =
1

4
−

1

4Ly
,

xd,max = xd,min +
1

Ly
=

1

4
+

3

4Ly
. �21�

Therefore, the flat-band regime shrinks as the transverse
width increases and eventually goes to zero in the two-
dimensional limit. This trend highlights the importance of
finite transverse width of the system and why the flat-band
physics is no longer the dominant player in 2D. In the fol-
lowing, we will try to write down the effective-field theory
for both the flat and dispersive bands in weak coupling.

III. WEAK-COUPLING ANALYSIS

Even though we have derived the analytical form of wave
functions in armchair GNR, it is still quite complicated to
write down the effective-field theory. In the flat-band regime,
after integrating out gapped bands, there remains a flat band
with intersecting dispersive bands. Note that the lattice fer-
mion can be decomposed into eigenstates,

c��x,y,�� =
1

	Lx
�

k

eikx�
m,s

�ms�y�cms��k� , �22�

where the extra geometric factor is included in the modified
wave function �ms�y�=eik��y��ms�y�. In the low-energy limit,
one can approximate all intersecting bands with linear dis-
persions, the above expansion is then greatly simplified.

Let us work out the chiral-field expansion in the flat-band
regime at E= t as an example. In that case, the effective
low-energy theory is described by the flat band and the in-
tersecting dispersive bands of the antibonding sector s=1.
Thus, the lattice fermion can be decomposed into the flat-
band and pairs of chiral-field operators,
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c��r� � �F�y��F��x� + �
m

�
P

eiPkmx�Pm�y��Pm��x� ,

�23�

where P=R /L= + /− represents the chirality. The modified
�including the geometric phases� wave function for the flat-
band orbital is

�F�y� =
1

	Ly + 1
� sin��y/2�

− sin��y/2� � , �24�

and those for the right and/or left-moving plane waves at
Fermi point 	km are

�Pm�y� =
1

	Ly + 1
� eiPkm�A sin�qmy�

eiPkm�2/3+�B� sin�qmy� � , �25�

where the shorthand notation is introduced �A/B=��y ,A /B�.
Substituting the chiral-field expansion into the lattice Hamil-
tonian, one can easily derive the effective-field theory in the
flat-band regimes.

Since the density of states is divergent for the flat band,
the dispersive bands can be dropped to the leading-order ap-
proximation. The effective Hamiltonian, keeping the flat
band only, is rather simple,

HF = UF�
x

nF↑�x�nF↓�x� , �26�

where nF��x� is the number density of each spin flavor and
UF is the effective on-site interaction for the flat-band orbit-
als, which can be computed by projection onto the flat band,

UF = U�
y

��F�y��2��F�y��2 =
U

Ly + 1
. �27�

Note that the kinetic energy is quenched in the flat band and
thus the ground state contains no quantum fluctuations. To
avoid the cost of UF, the ground state consists of the maxi-
mum number of singly-occupied Wannier orbitals, which
leads to local magnetic moments. Since there is no overlap
between adjacent orbitals, these magnetic moments are free
and give rise to a large ground-state degeneracy.

To lift the large degeneracy of the ground state, interac-
tion with the itinerant carriers in the dispersive bands must
be included. While the effective Hamiltonian for the interac-
tion contains other terms, the terms to play a key role are the
exchange interactions which couple the local moments and
the itinerant carriers,

HJ = �
x,m

− JmSF�x� · Sm�x� , �28�

where SF�x� is the spin-density operator for the local mo-
ments and Sm�x�=SRm�x�+SLm�x� is the spin density of itin-
erant carriers in the crossing band m. The exchange integral
is given by

JPm = 2�
y,y�

�F
��y��F�y���Pm�y��Pm

� �y��Vy,y�. �29�

Using Eqs. �24� and �25�, we obtain the exchange integral
due to the on-site interaction Vy,y�=�y,y�U; it has a rather
simple form,

Jm = 2U�
y

��F�y��2��Pm�y��2

=
2U

�Ly + 1�2 �
y=odd

2 sin2�qmy� =
U

Ly + 1
. �30�

The subscript P=R /L is dropped because the coupling
strength does not depend on the chirality. Thus, the on-site
interaction induces a ferromagnetic coupling between the lo-
cal moments in the flat band and the itinerant spins in the
dispersive bands.

The exchange coupling Jm tends to align the local mo-
ments from the flat band because it does not cause any extra
kinetic energy. The ferromagnetically aligned moments act
back on the itinerant carriers and induce finite polarization in
the dispersive bands. The interacting Hamiltonian HF+HJ,
therefore, shows interesting two-step flat-band
ferromagnetism—electronic correlations in the flat band give
rise to local moments without direct exchange coupling,
while the presence of gapless itinerant carriers mediates the
ferromagnetic order. The significant feature of the armchair
GNR is that even within the one-orbital Hubbard model
without any magnetic impurity nor additional localized lev-
els, the electronic correlations give rise to both local mo-
ments and itinerant carriers simultaneously due to the pecu-
liar topology of the open edges.

It is also interesting to consider the finite-size effect arisen
from the length Lx of the armchair GNR. If one imposes the
periodic boundary conditions along the x direction, the sys-
tem becomes a short segment of armchair nanotube. In this
case, only when the quantized momenta kx=2l� /Lx �l
=0,1 , . . . ,Lx−1� coincide with the Fermi points 	km, the
gapless itinerant carriers are present and the ferromagnetic
ground state is realized. For open boundary conditions with
finite Lx, the situation is much more complicated; kx is no
longer good quantum number and the band structure can be
deformed by finite Lx. However, from numerical calculations
for the tight-binding Hamiltonian Ht, we have found that the
energy spectrum around the flat-band level E= 	 t is not af-
fected by finite Lx and can be accurately approximated by the

quantization rule kx= l̃� / �Lx+1� �l̃=1,2 , . . . ,Lx�. When the
quantized momenta kx coincide with the Fermi points km,
ferromagnetism sets in with the help of these gapless itiner-
ant carriers. Therefore, depending on specific choice of Lx,
the ground state of the armchair GNR in the flat-band regime
can be ferromagnetic or Curie-type paramagnetic.

IV. NON-ABELIAN DENSITY MATRIX
RENORMALIZATION GROUP

To check the validity of the weak-coupling scenario and
see whether it survives for the realistic coupling regime, we
choose the non-Abelian DMRG method.37 It is important to
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emphasize that, to look for the higher-spin ground state, the
non-Abelian approach is more powerful and convenient
compared to the conventional DMRG �Refs. 38 and 39� be-
cause the former makes the full use of the spin SU�2� sym-
metry. Employing the non-Abelian DMRG method, we can
compute the energy difference between the higher-spin �fer-
romagnetic� state and the lowest-spin �paramagnetic� state,

��xd,�S� � E0�xd,S� − E0�xd,S0� , �31�

where E0�xd ,S� is the lowest energy in the subspace with the
doping rate xd and the total spin S. Furthermore, �S�S−S0,
where S0=0 ,1 /2 denotes the lowest spin depending on
whether the number of carriers is even or odd. The calcula-
tion is performed for the system with Ly =5 and Lx=2, for

which the quantized momenta kx= l̃� /3 coincide with the
Fermi points of the dispersive bands, and therefore the weak-
coupling theory predicts the ferromagnetic ground state. The
number of SU�2� multiplets kept is up to 450, typically cor-
responding to 1000–3000 U�1� states. The truncation error is
of order 10−5 or less, and the results are extrapolated to the
limit of zero truncation error.

Figure 2 shows the energy difference ��xd ,�S� as a func-
tion of the doping rate xd and the spin �S for U / t=4. We do
find numerically the ferromagnetic �higher-spin� ground state
in the flat-band regime, xd=0.25,0.30,0.35.40 The results
with U / t=2,8 �not shown here� also show a similar doping-
rate dependence, supporting the ferromagnetism for the flat-
band regime.

Collecting all data for ��xd ,�S� together, we can deter-
mine the ground state at each doping level and its energy
gain per unit cell, ��xd�, which is the energy difference be-
tween the higher-spin ferromagnetic ground state and the
paramagnetic one with lowest spin,

��xd� =
1

Lx
�E0�xd� − E0�xd,S0�� , �32�

where E0�xd� is the ground-state energy at doping level xd.
The results for the flat-band regime �0.2�xd�0.4 for Ly

=5� and U / t=2,4 ,8 are summarized in Table I. The optimal
doping occurs at xd

�=0.3 as predicted by the weak-coupling
theory. Thus, the non-Abelian DMRG results support the
carrier-mediated ferromagnetism predicted from the analyti-
cal approach in weak coupling even when the interaction
strength is in the intermediate regime.

To further verify the role of the flat band, we also calcu-
late the profile of spin density in the ground state. Since the
interaction strength is now larger than the hopping ampli-
tude, one may guess any peculiar feature in the band struc-
ture should be suppressed. Figure 3 shows the results at the
optimal doping xd=0.3 with total spin S=2. Remarkably, the
spin polarization for finite U / t=4 has a similar profile to that
in the weak-coupling limit U→0+ obtained from the eigen-
wave functions of the tight-binding model Ht. The result
clearly indicates that the flat-band orbitals still play a signifi-
cant role in the ferromagnetic ground state for finite U / t. The
physical picture developed in weak coupling thus applies
rather well and extends smoothly to the intermediate- and
strong-coupling regime.

As the momentum kx is discretized in the system with
finite Lx, it is important to see how the properties of the
system change depending on Lx. For armchair GNR, the
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TABLE I. Energy difference per unit cell ��xd� between the
ferromagnetic ground state and the paramagnetic one in the arm-
chair GNR with Lx=2 and Ly =5 for the flat-band regime. Here S is
the total spin of the ground state and the hopping amplitude is
chosen t=3 eV.

xd S U / t=2 U / t=4 U / t=8

0.25 3/2 −44 meV −54 meV −57 meV

0.30 2 −115 meV −111 meV −87 meV

0.35 3/2 −48 meV −52 meV −34 meV
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�=0.30 with the interaction
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represented by solid circles, squares, triangles, and diamonds.

LIN et al. PHYSICAL REVIEW B 79, 035405 �2009�

035405-6



large unit cell and peculiar nature of the flat-band states lead
to slow convergence of the DMRG calculation and make it
difficult to treat the system with larger Lx, unfortunately.41

Nevertheless, we have performed numerical calculation for
other one-dimensional-lattice models, which have essentially
the same band structure as that of armchair GNR. We have
then found that the models with larger number of unit cells
indeed exhibits the itinerant ferromagnetism with the prop-
erties expected from the weak-coupling theory in Sec. III,
even including the peculiar finite-size effect. The results will
be reported elsewhere.42 Furthermore, we also emphasize
that, as we will see in Sec. V, the first-principles calculation
for infinite-length armchair GNR also shows the itinerant
ferromagnetism for the flat-band regime, in accordance with
the weak-coupling prediction. These observations support
that the carrier-mediated ferromagnetism found in this sec-
tion would survive for larger Lx and connect to the thermo-
dynamic limit Lx→�.

V. LOCAL SPIN-DENSITY APPROXIMATION

The complimentary approaches of the weak-coupling
analysis and the non-Abelian DMRG method establish the
ferromagnetic ground state in armchair GNR within the
Hubbard-type model. To treat GNRs, however, one must take
account of the realistic band structure beyond the tight-
binding approximation as well as the effect of unscreened
Coulomb interactions. For the purpose, we have carried out
first-principles calculation of the local spin-density approxi-
mation within density-functional theory. The self-consistent
band-structure calculations under lattice optimization were
performed using the full-potential projected augmented wave
method43,44 as implemented in the VASP package.45,46

Figure 4�a� shows our result of the band structure of the
armchair GNR with Ly =5 at half filling. The numerics show
that the band structure of the undoped armchair GNR is more
or less similar to the tight-binding results. There exists a
narrow band with bandwidth �0.4 eV located at 2.5–2.9 eV

below the Fermi level crossed by two itinerant bands. Fur-
thermore, one can find similar structure in the unoccupied
counterpart though the particle-hole symmetry does not hold
for this case.

Although the lower “flat band” has a finite bandwidth
��0.4 eV� and thus is not flat anymore, it is still massive
enough compared with the other two dispersive bands. As a
result, the two-step carrier-mediated ferromagnetism still
works as will be described below. Figure 4�b� presents the
magnetic moment per unit cell at different hole doping levels
xh=1− �n�. Upon hole doping, the magnetic moment goes up
and reaches its maximum, �1.1�B per unit cell, at the opti-
mal hole doping xh

��0.28. In the mean time, as shown in
Fig. 4�c�, the energy gain of the ferromagnetic state per unit
cell raises noticeably, especially near the optimal doping, up
to �37 meV /cell. These results clearly support the emer-
gence of the ferromagnetism.

The obtained value of the magnetic moment �1.1�B per
unit cell indicates that the nearly flat band is almost fully
polarized at the optimal doping. This feature is also shown
by the spin decomposed band structure in Fig. 5�a�. The
bandwidth of the nearly flat band at the optimal doping is
slightly suppressed to �0.3 eV because of the reduced den-
sity. The exchange splitting between opposite spins is about
0.5 eV. Figures 5�b� and 5�c� demonstrate, respectively, the
top and side views of the spin-density distribution at the
optimal doping. It is truly remarkable that the profile of the
spin density is almost identical to the Wannier orbital in the
weak-coupling limit �see Fig. 1�. The nodes caused by de-
structive quantum interferences can be seen clearly in the
numerics. We emphasize that not only the dumb-bell shape
of the spin density emerges as predicted, the optimal doping
concentration and the size of the spin polarization realized
also agree with the prediction of the weak-coupling theory.

As the hole doping increases further, the magnetic mo-
ment as well as the energy gain of the ferromagnetic state are
suppressed. The ground state eventually turns nonmagnetic
at larger hole doping. It is interesting to notice that the fer-
romagnetic ground state, as shown in Fig. 4, exists for 0.15
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�xh�0.42, which is wider than the flat-band regime be-
tween xmin=0.2 and xmax=0.4 predicted by weak-coupling
theory for Ly =5 armchair GNR. The ferromagnetic phase
obtained by the local spin-density approximation then seems
to persist even slightly outside the flat-band regime. This
shall not be surprising since the interaction strength is no
longer weak in comparison with the kinetic energy. To ad-
dress this issue, one can calculate the variational energy of
the Hubbard model in the armchair GNR �Ref. 47� to pin
down the ferromagnetic regime at finite interaction strength
U. Considering the GNR slightly outside the flat-band re-
gime, although costing higher kinetic energy, it is still pref-
erential to fill in particles and/or holes in the flat band since
the exchange energy is lowered. Thus, we expect that the
ferromagnetic ground state can exist even outside the flat-
band regime. The variational calculations indeed show that
the above understanding is correct and the ferromagnetic
phase exists in a wider range than the flat-band regime.
Therefore, it is expected that the inclusion of the realistic
Coulomb interaction will give rise to similar enhancement of
the flat-band ferromagnetism as demonstrated in Fig. 4 here.

VI. DISCUSSIONS AND CONCLUSIONS

Here we would like to elaborate on several subtle points
which were not discussed in previous sections. First, we note
that the weak-coupling theory in Sec. III developed for the
Hubbard model in the armchair GNR is pretty robust against
lattice distortions. In practical graphite network, the hopping
along horizontal and tilted vertical bonds is expected to be
slightly different. Though the deviation shifts the flat band
from E= 	 t, the bands remain flat and the same mechanism
of the ferromagnetism applies.

Furthermore, the profile of the short-range interaction
does not seem to do much harm either. Following steps simi-
lar to those in Sec. III, we can compute the exchange cou-
pling due to nearest-neighbor interaction V� �tilted vertical
bonds� and V� �horizontal bonds�. Since the product of the
flat-band wave function �F�y��F�y��=0 if the coordinates
are connected by a tilted vertical bond, V� does not give rise
to any exchange coupling. On the other hand, the nearest-
neighbor interaction along the horizontal bonds V� gives rise
to nonvanishing exchange coupling,

Jm
V� = 2V��

y
�F

��y��F�y��Pm
� �y��Pm�y�

=
2V�

�Ly + 1�2 �− 2 cos km� �
y=odd

sin2�qmy�

= −
V�

Ly + 1
cos km. �33�

Here we have used the expression for the interaction Vy,y�
=�y,y�V� with the notation y= �y ,B /A� for y= �y ,A /B�. As
expected, the exchange couplings arisen from right/left-
moving fields in the same dispersive band are the same and
thus the subscript P=R /L is dropped. We thereby find that in

the presence of the nearest-neighbor interaction V� and V�,
the exchange coupling in Eq. �28� becomes

Jm =
1

Ly + 1
�U − V� cos km� . �34�

Since V� ,V� �U is often expected, the exchange coupling is
still ferromagnetic and the picture does not change.

The above calculations can be generalized to the screened
short-ranged interaction. Suppose the spatial profile of the
screened interaction goes as exp�−x /�� /	x2+ l0

2, where l0 is a
short-range cutoff �comparable to the lattice constant� and �
is the length scale of the short-ranged interaction. Ignoring
the complicated form factor due to detail orbital overlapping,
the exchange coupling takes the general form Jm�x��exp
�−x /��cos�kmx� /x. As expected, the exchange coupling de-
creases as the distance is far apart. Furthermore, the oscilla-
tory factor cos�kmx� makes the couplings to the dispersive
bands with different signs and tends to cancel each other. It
will further suppress the effects of the exchange coupling
beyond the nearest neighbors. This trend is in agreement
with our first-principles calculations where the true long-
ranged Coulomb interaction is included.

To realize the flat-band ferromagnetism in armchair GNR,
the crucial challenge lies in how to achieve the appropriate
doping level. One of graphene’s superior properties is its
pronounced ambipolar electric field effect.2,5,6 By applying
gate voltages, the charge carriers can be tuned between elec-
trons and holes with concentration up to 1013 cm−2. Even so,
it is unlikely that the external gate voltage alone can pour
enough electrons and/or holes into the system to reach the
flat-band regime. Another route to dope GNR is via chemical
doping. It was demonstrated8 that the chemical dopants in
the substrate can markably change the carrier density. Per-
haps the combination of both methods can be even more
efficient.

In conclusion, by combining the weak-coupling analysis,
the non-Abelian DMRG technique, and the first-principles
calculations, we show how ferromagnetism occurs in arm-
chair GNR—electronic correlations give rise to magnetic
moments in the flat band and the itinerant carriers in the
dispersive bands mediate ferromagnetic coupling between
these uncoupled moments. Recently, there are proposals48,49

to use GNR to build transistors and spin qubits. While these
proposals take care of many realistic issues, the electronic
correlations are ignored. Our study here shows that elec-
tronic correlations in GNR can bring up surprises such as the
carrier-mediated flat-band ferromagnetism. Therefore, it is
crucially important to include the correlation effects when
we try to realize these proposals into devices.
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