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Forewords

This booklet is the lecture notes that I use for the course Astrophysical
Radiative Processes, a graduate core course in the Institute of Astronomy,
National Tsing Hua University, Hsinchu. It covers concepts and formulae
of radiation transfer and various radiation mechanisms. These concepts are
fundamental in understanding astrophysical phenomena. The very popu-
lar textbook of Rybicki and Lightman (1979, 2004) is heavily followed in
this course. With the intention to make this booklet useful as a handbook
to some extent, I have collected many relevant formulae without detailed
derivation. In this regard, this booklet can be treated as an extraction ver-
sion of Rybicki and Lightman’s textbook. Some fundamental discussions on
electromagnetic fields and materials on atomic and molecular line emissions
in that textbook are omitted, mainly because of time limitation and my
personal preference towards high-energy astrophysics. A parallel discussion
of curvature radiation with synchrotron radiation is incorporated, although
the curvature radiation finds its application only in strong magnetic fields
like that in pulsars’ magnetospheres. I strongly suggest readers to have that
textbook in hands to cover those omitted materials if wanted and to read
more detailed physics discussions. It is also very important to work on the
problems at the end of each chapter to improve understanding of the topics
covered in that textbook.

Hsiang-Kuang Chang

Hsinchu, Taiwan
February 2023
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Chapter 1

Basics of Radiation Fields and
Radiative Transfer

1.1 Specific intensity

There are many ways to describe a radiation field. A very fundamental,
useful way is to employ the concept of specific intensity. We may denote the
energy passing through an area dA normal to the direction of propagation
in time interval dt, frequency range dν and the solid angle dΩ as

dE = IνdΩdνdAdt , (1.1)

where Iν is the specific intensity or the brightness. Its unit in the Gaus-
sian system is [Iν ] = erg s−1 cm−2 str−1 Hz−1. The reason to use intensity as
the fundamental quantity to describe a radiation field is that it is constant
along the way of propagation in vacuum, that is, if there is no interaction
with matter along the way. Let’s take an isotropic constant point radiation
source as an example. At a certain distance r, the energy passing through a
certain area dA per unit time is inversely proportional to r2. However, the
solid angle dΩ subtended by that area dA is also inversely proportional to
r2. Iν is therefore constant in r in such a case. The word ‘specific’ is used to
indicate that this quantity is referred to as ‘per unit frequency’ at a certain
frequency. The specific intensity is a function of directions, besides space,
time and frequencies. Its average value over all directions, the mean specific
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intensity, is obviously

Jν =
1

4π

∮

IνdΩ . (1.2)

The flux, or more precisely, the specific flux or flux density, passing
through a surface with normal direction n̂ is

Fν = n̂ · (
∮

IνΩ̂dΩ) =
∮

Iν cos θdΩ , (1.3)

where cos θ = n̂ · Ω̂ and Ω̂ refers to the direction of the radiation being
integrated. This cos θ accounts for the unit area projection onto the plane
perpendicular to each Ω̂. The unit used for the flux density is called Jansky
(Jy), and

1 Jy = 10−23 erg s−1 cm−2 Hz−1.

This is the physical quantity that is usually measured in observations, in
particular in radio bands.

The (specific) momentum flux in the direction n̂ is then, multiplying one
more factor of cos θ to account for the momentum component in the direction
n̂ and considering p = E/c for photons,

pν =
1

c

∮

Iν cos
2 θdΩ . (1.4)

One should note that, for photons moving in the direction Ω̂ of n̂ · Ω̂ < 0,
the negative directionality is properly counted twice by the two factors of
cos θ, one for the unit area projection and the other for the momentum
component. In an isotropic radiation field, the momentum flux at any point
in any direction is therefore not zero, while the momentum volume density
is.

The radiation pressure (per unit frequency) of a radiation field, for a
totally reflecting material, is

Pν =
2

c

∫ π
2

0
Iν cos

2 θdΩ , (1.5)

where the integration over θ is between 0 and π
2
only. This can be understood

by considering that pressure is simply a momentum flux. The factor of 2
at the right hand side is due to the assumption of material being ’totally
reflecting’. For an isotropic radiation field, from Eq.(1.5), we have Pν =
4πIν
3c

= 1
3
uν, where uνdν is the differential energy density and that 4πIν = cuν

for an isotropic field is used.
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1.2 Radiative transfer

Intensity may change due to emission, absorption, and scattering along the
way of propagation. Consider the energy emitted by a volume dV into the
solid angle dΩ in time interval dt as

dEe = jdV dΩdt = jνdsdAdΩdtdν ,

we have the differential change in the specific intensity being

dIν = jνds . (1.6)

jν thus defined is called the emission coefficient. We usually define the
absorption coefficient αν as

dIν = −ανIνds . (1.7)

In terms of opacity κν or the cross section σν , we have

αν = ρκν = nσν , (1.8)

where n is the number density and ρ is the mass density of the matter involved
in the corresponding absorption process. Opacity κν is also called the mass
absorption coefficient.

The radiative transfer equation, without scattering for the moment, reads

dIν
ds

= −ανIν + jν . (1.9)

For the case of emission only, αν = 0,

Iν(s) = Iν(s0) +
∫ s

s0
jν(s

′)ds′ , (1.10)

and for absorption only, jν = 0,

Iν(s) = Iν(s0) exp(−
∫ s

s0
αν(s

′)ds′) . (1.11)

It is convenient to define the optical depth τν as

dτν = ανds . (1.12)

6



We then have

τν(s) =
∫ s

s0
αν(s

′)ds′ (1.13)

with τν(s0) = 0. When a system has τν ≫ 1, it is optically thick (opaque),
and when τν ≪ 1, it is optically thin (transparent).

With the source function Sν defined as Sν = jν/αν , the radiative trans-
fer equation becomes

dIν
dτν

= −Iν + Sν , (1.14)

whose solution is

Iν(τν) = Iν(0)e
−τν +

∫ τν

0
Sν(τ

′
ν)e

−(τν−τ ′ν)dτ ′ν . (1.15)

If Sν is a constant, the solution is

Iν(τν) = Iν(0)e
−τν + Sν(1− e−τν ) . (1.16)

We can see that Iν approaches Sν when τν → ∞. This can also be seen
from Eq.(1.14), without assuming Sν being constant, that when Iν > Sν

we will have dIν/dτν < 0 and vice versa. The specific intensity therefore
approaches the source function at a large τν . In this sense it is a relaxation
process. When there is no injection (Iν(0) = 0), we can see that Iν gradually
approaches Sν along increasing τν . On the other hand, for τν ≪ 1, besides
the contribution from Iν(0)e

−τν , Iν is approximately equal to τνSν .
The mean free path ℓν is the average distance that a photon can travel

before being absorbed. For the moment let’s assume there is no scattering,
which will be discussed and included later. To associate ℓν with the absorp-
tion coefficient αν , let’s consider the corresponding mean optical depth. From
Eq.(1.11) we see that the survival probability of a photon after traveling an
optical depth τν is e−τν . The mean optical depth that a photon can travel
through is then

〈τν〉 =
∫ ∞

0
τνe

−τνdτν = 1 . (1.17)

This is why an optical depth of unity is usually taken to be the ‘visible’ depth,
or the boundary of being opaque or transparent. In a homogeneous medium,
we may have 〈τν〉 = ανℓν (Eq.(1.12)), which is equal to 1. Therefore

ℓν =
1

αν

=
1

nσν

=
1

ρκν

. (1.18)
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We may also interpret this ℓν as a ‘local’ mean free path of an inhomogeneous
medium.

1.3 Thermal radiation and Kirchhoff’s law

Thermal radiation is the radiation emitted by matter in thermal equi-
librium, and blackbody radiation is the radiation which is itself in ther-
mal equilibrium. The specific intensity of a blackbody radiation follows the
Planck function, that is,

Bν(T ) =
2ν2

c2
hν

ehν/kT − 1
. (1.19)

Kirchhoff’s law for thermal radiation is that the source function of matter
in thermal equilibrium is the Planck function:

Sν ≡ jν
αν

= Bν(T ) . (1.20)

This can be seen by considering a blob of matter in thermal equilibrium
immersed in a blackbody radiation field of the same temperature. In this
example, because of thermal equilibrium, the emissivity of this matter will
be equal to what it absorbs from the ambient, that is, jν = ανBν . This
is, however, generally true, no matter what kind of ambient fields is present
or whether there is an ambient radiation field or not, because the source
function, which is the ratio of emissivity and the absorption coefficient, is an
intrinsic, thermodynamic property of the matter. Kirchhoff’s law relates jν
and αν with the temperature of the matter in thermal equilibrium.

True thermal equilibrium, however, does not really exist. In many appli-
cations, thermal equilibrium is assumed to be locally true. This is called the
assumption of local thermal equilibrium (LTE). Sometimes distinction
in the terminology is made in the following way: When the source function
does not include scattering, it is called weak LTE. When scattering is in-
cluded in the source function, it is modest LTE. When the specific intensity
is assumed to be equal to the Planck function, i.e., Iν = Bν , it is called
strong LTE.

One thing to note is that the Planck intensity is

B(T ) =
∫ ∞

0
Bν(T )dν =

2h

c2
(
kT

h
)4
∫ ∞

0

x3dx

ex − 1
=

2π4k4

15c2h3
T 4 , (1.21)
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where the value π4/15 of the integral over x is employed. Considering the
flux F from the surface of a blackbody (see Eq.(1.3)),

F =
∫ θ=π

2

θ=0
B cos θdΩ = πB =: σT 4 , (1.22)

we have the Stefan-Boltzman constant σ to be 2π5k4

15c2h3 , which is 5.67×10−5

erg cm−2 deg−4 s−1.
One way of characterizing the brightness of a radiation field at a certain

frequency is to assign a brightness temperature Tb so that

Iν = Bν(Tb) (1.23)

at that frequency. With the LTE assumption, we have

dIν
dτν

= −Iν +Bν(T ) , (1.24)

where the temperature T is in general a function of τν . In the regime that
hν ≪ kTb, we have

Iν =
2ν2

c2
kTb (1.25)

and therefore

dTb

dτν
= −Tb + T . (1.26)

We can see that, when τν ≫ 1, Iν approaches Bν(T ) and Tb approaches T ,
similar to what we get from Eq. (1.14). That is to say, for an optically thick
system, its brightness temperature approaches its thermal temperature. For
an optically thin system, its brightness temperature is always smaller than
its thermal temperature.

1.4 The Einstein coefficients

Kirchhoff’s law implies some relation between emission and absorption at a
microscopic level. Let’s consider a two-level atomic system. Level 1 is at
energy E with statistical weight g1 and level 2 is at energy E+hν0 with sta-
tistical weight g2. The statistical weight is the degeneracy, or, the number of
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possible quantum states of a certain energy level. The Einstein A-coefficient
A21 is defined to be the transition probability per unit time for spontaneous
emission, the Einstein B-coefficient B12 is defined with B12J̄ν being that for
absorption, and another Einstein B-coefficient B21 with B21J̄ν being that
for stimulated emission. J̄ν here is a frequency-weighted average of the
average specific intensity, defined as

J̄ν(ν0) =
∫ ∞

0
Jνφ(ν; ν0)dν , (1.27)

where φ(ν; ν0) is the line shape function sharply peaked at ν0 and is normal-
ized as

∫

φ(ν; ν0)dν = 1. The inclusion of the stimulated emission process is
the key to find relations among Einstein coefficients. The consideration of
the line shape function is not essential here but is needed when relating jν
and αν with Einstein coefficients.

In thermal equilibrium, we have

n1B12J̄ν = n2A21 + n2B21J̄ν , (1.28)

where n1 and n2 are the number density of atoms at level 1 and level 2
respectively. Since, from the Boltzmann distribution,

n1

n2
=

g1
g2

e−E/kT

e−(E+hν0)/kT
=

g1
g2
ehν0/kT , (1.29)

and

J̄ν =
A21/B21

(n1B12/n2B21)− 1
,

we have

J̄ν =
(A21/B21)

(g1B12/g2B21)ehν0/kT − 1
. (1.30)

Assuming the ambient field is also in thermal equilibrium with the atomic
system, that is, Jν = Bν , we expect J̄ν(ν0) = Bν(ν0), since φ(ν; ν0) is sharply
peaked at ν0. This can only be achieved by assigning the following relations:

g1B12 = g2B21 , (1.31)
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and

A21 =
2ν2

0

c2
hν0B21 . (1.32)

The above two equations are the so-called detailed balance relations.
Since Einstein coefficients, A21, B21, and B12, are intrinsic properties of an
atom, their values do not depend on whether the system is in thermal equilib-
rium or not. The detailed balance relations are therefore always valid even
when the system is not in thermal equilibrium. They relate emission and
absorption at a microscopic level and can be used to derive an extension of
Kirchhoff’s law to include non-thermal emissions.

The energy spontaneously emitted from such a two-level system in a dif-
ferential range of dV dtdΩdν is

hνn2A21dV dt
dΩ

4π
φ(ν)dν = jνdV dtdΩdν . (1.33)

At the right hand side of the above equation, a macro expression is employed.
The factor 4π comes in because the emission is assumed to be isotropic. We
therefore have the emission coefficient to be

jν =
hνφ(ν)

4π
n2A21 . (1.34)

For the absorption coefficient, let’s consider the energy absorbed by the sys-
tem in dV dt, which is, noting that B12J̄ν is defined to be the transition
probability per unit time,

hνn1dV B12J̄νdt = hνn1dV B12(
∫

(
1

4π

∫

IνdΩ)φ(ν)dν)dt . (1.35)

The energy absorbed out of a beam in dV dtdΩdν is then equal to

hνn1dV B12
1

4π
IνdΩφ(ν)dνdt = ανIνdsdAdtdΩdν . (1.36)

Again at the right hand side of the above equation a macro expression is
employed. The absorption coefficient, uncorrected for stimulated emission,
is then

αν =
hνφ(ν)

4π
n1B12 . (1.37)
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The stimulated emission is better treated as a ‘negative absorption’. In the
same manner as the above discussion, we have the absorption coefficient as

αν =
hνφ(ν)

4π
(n1B12 − n2B21) . (1.38)

We can now write down the equation of radiation transfer with Einstein
coefficients, which is

dIν
ds

= −hνφ(ν)

4π
(n1B12 − n2B21)Iν +

hνφ(ν)

4π
n2A21 , (1.39)

and we note that the source function is

Sν =
n2A21

n1B12 − n2B21
. (1.40)

From the detailed balance relations, Eq.(1.31) and Eq.(1.32), we have

αν =
hνφ(ν)

4π
n1B12(1−

g1n2

g2n1
) (1.41)

and

Sν =
2ν2

c2
hν

( g2n1

g1n2
− 1)

. (1.42)

One sees that the source function in fact does not depend on Einstein coef-
ficients, and Eq.(1.42) is called the generalized Kirchhoff’s law, which
applies to all situations, including non-thermal cases.

In thermal equilibrium, noting that n1

n2
= g1

g2
e(hν/kT ), we have

αν =
hνφ(ν)

4π
n1B12(1− e−hν/kT ) (1.43)

and Sν = Bν . This can be regarded as a proof of Kirchhoff’s law for thermal
radiation. One should pay attention to the factor (1− e−hν/kT ), which indi-
cates a reduced absorption due to the presence of stimulated emission. We
can also see that αν is always positive in such a case. To have a negative αν ,
like in the cases of laser or maser, we need to have an inverted population,
that is,

n1

g1
<

n2

g2
. (1.44)
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1.5 Scattering in radiative transfer

So far scattering has not yet been included in our discussion. Scattering
is usually not negligible. For simplicity, let’s consider only isotropic and
coherent scattering. The assumption of isotropic scattering is a quite artificial
one, as we know the Thomson scattering, which is the most common seen
one, depends on the scattering angle θ in the form of cos2 θ+1. Here, for the
demonstration of concept, we adopt this simplification. The term ‘coherent’
used here refers to the constancy of the photon energy before and after the
scattering. This is usually a good approximation when the photon energy is
low. The emission coefficient for isotropic, coherent scattering can be found
by equating the absorbed and emitted power due to scattering (this is what
is meant by ‘coherent’), that is,

∫

σνIνdΩ = 4πjs , (1.45)

where σν is the scattering coefficient, which is similar to the absorption
coefficient αν and should not be confused with cross sections, and the integra-
tion is over all the incoming directions of Iν . The factor ‘4π’ accounts for the
‘isotropic’ emission into all directions. We therefore have, for scattering-only
processes, the emission coefficient as

js = σνJν , (1.46)

the source function as

Ss =
js
σν

= Jν (1.47)

and the radiative transfer equation as

dIν
ds

= −σν(Iν − Jν) . (1.48)

Now let’s put absorption and scattering together. The equation then
reads

dIν
ds

= −ανIν + jν − σνIν + σνJν , (1.49)

where jν is the emission coefficient without scattering. It can be turned into

dIν
ds

= −(αν + σν)(Iν − Sν) , (1.50)
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by defining the source function as

Sν =
jν + σνJν

αν + σν
. (1.51)

This is the source function with absorption and scattering. When jν/αν = Bν

is used we will have

Sν =
ανBν + σνJν

αν + σν
. (1.52)

The term (αν + σν) is the total absorption coefficient, which is also called
the extinction coefficient. We can also see that the modest LTE, S = B
including scattering, implies J = B.

Let’s now consider the length between the locations of a photon being
emitted and absorbed. The mean free path for a photon to travel before
being absorbed or scattered is (cf. Eq.(1.18))

ℓ =
1

αν + σν
. (1.53)

During the random walk of scattering, the probability ǫ for a photon being
absorbed after traveling a mean free path ℓ is ανℓ, that is,

ǫ =
αν

αν + σν
. (1.54)

If N is the number of paths taken by a photon before being absorbed, that
is, Nǫ = 1, the length between the locations of a photon being emitted and
absorbed will be

ℓ∗ =
√
Nℓ =

ℓ√
ǫ
=

1
√

αν(αν + σν)
. (1.55)

This length, ℓ∗, is called the diffusion length or the effective mean free
path. It is shorter than the mean free path without scattering (Eq.(1.18)),
but longer than the mean free path defined by Eq.(1.53), i.e., ℓno scattering >
ℓ∗ > ℓ.

We may define an effective absorption coefficient α∗ as

α∗ =
√

αν(αν + σν) , (1.56)
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and dτ∗ = α∗ds, which are local properties and can be used for an inhomo-
geneous medium. The τ∗ defined this way is called the effective optical
depth or effective optical thickness. If τ∗ ≪ 1, the medium is called
effectively thin or translucent. Most photons emitted by the medium can
escape out of the medium. If, on the other hand, τ∗ ≫ 1, the medium is
called effectively thick. Photons at depths larger than the effective mean free
path will be mostly absorbed before escaping out of the medium. There-
fore, for thermally emitted photons at large effective optical depth, radiation
tends to become in thermal equilibrium with matter, and one can expect
Sν → Bν and Iν ❀ Bν . The former is Kirchhoff’s law of the (modest) LTE
assumption, which includes scattering. For this reason, ℓ∗ is also called the
thermalization length. The specific intensity, which is usually the solution
that we are looking for, is not as close as the source function to the Planck
function. These points are further elaborated in the next section.

1.6 Radiative diffusion

We have demonstrated that the source function Sν approaches Bν at large
effective optical depth. In a dense region, such as in the deep interior of a
star, a short distance may readily correspond to a large optical depth. To
explore how close the specific intensity is to the Planck function, let’s now
further take the plane-parallel approximation, that is, all physical properties
of the medium depend on the depth only. The intensity is therefore only a
function of depth z and polar direction θ. Considering that ds = dz/ cos θ
and defining µ = cos θ, we have, from Eq.(1.50),

µ
∂Iν(z, µ)

∂z
= −(αν + σν)(Iν − Sν) , (1.57)

and therefore

Iν(z, µ) = Sν −
µ

αν + σν

∂Iν
∂z

. (1.58)

Under the (modest) LTE approximation, Sν = Bν . The second term at the
right hand side is of the order of Bν/τ , which is very small compared to the
first term because of a large τ . In such a case, we may take Bν as the zeroth
order approximation of Iν and have

Iν(z, µ) ≈ Bν(T )−
µ

αν + σν

∂Bν

∂z
. (1.59)
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This equation is referred to as the Rosseland approximation.
The flux density at a certain z in the polar direction (ẑ) is obtained by

integrating the specific intensity over the solid angle in all directions, that is,

Fν(z) =
∫

Iν cos θdΩ

= 2π
∫ +1

−1
Iνµdµ

=
−2π

αν + σν

(
∫ +1

−1
µ2dµ)

∂Bν

∂z

= − 4π

3(αν + σν)

∂Bν

∂T

∂T

∂z
. (1.60)

The relation between energy flux and the local temperature gradient derived
with the assumption of Sν = Bν (including scattering, modest LTE), which
is good for large τ∗, is also called the Rosseland approximation. The total
flux is then

F (z) =
∫

Fν(z)dν

= −4π

3

(

∫

1

(αν + σν)

∂Bν

∂T
dν

)

∂T

∂z
. (1.61)

Noting that
∫ ∂Bν

∂T
dν = 4σT 3

π
and defining the Rosseland mean absorption

coefficient αR as

1

αR

=

∫ 1
(αν+σν)

∂Bν

∂T
dν

∫ ∂Bν

∂T
dν

, (1.62)

we reach

F (z) = −16

3

σT 3

αR

∂T

∂z
. (1.63)

Readers should not confuse the Stefan-Boltzmann constant σ with the scat-
tering coefficient σν . Eq.(1.63) is the Rosseland approximation of the energy
flux. It is like an equation of heat conduction with a heat conductivity 16

3
σT 3

αR
.

It is also in a form of energy diffusion and therefore this approximation is also
called the diffusion approximation. A corresponding Rosseland mean
opacity can be easily defined as κR = αR/ρ. Although an isotropic scatter-
ing is assumed in formulating Eq.(1.50), the same results can be obtained for
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the case of Thomson scattering, which has a forward-backward symmetry
containing the square of the cosine of the scattering angle (Clayton 1983,
p.181).

The Rosseland approximation assumes the source function to be the
Planck function, which is valid for a large effective optical depth. In such a
case, the specific intensity is also close to the Planck function, as shown in
Eq.(1.59). The Eddington approximation is to consider the intensity up
to the linear term in µ:

I(τ, µ) = a(τ) + b(τ)µ . (1.64)

The first three moments of this intensity is

J =
1

2

∫ +1

−1
Idµ = a , (1.65)

H =
1

2

∫ +1

−1
µIdµ =

b

3
, (1.66)

K =
1

2

∫ +1

−1
µ2Idµ =

a

3
. (1.67)

J is the mean intensity and H and K are proportional to the flux and radi-
ation pressure. We now have

K =
1

3
J , (1.68)

which is also known as the Eddington approximation. (Like the Rosseland
approximation, approximation names are used to refer to some derived re-
sults.) We note that this is equivalent to Pν =

1
3
uν , discussed below Eq.(1.5),

where an isotropic radiation field is assumed. Here we see that this result is
valid also for a slightly anisotropic field containing a term linear in cos θ.

Defining the normal optical depth dτ = −(αν + σν)dz, we have, from
Eq.(1.57),

µ
∂I

∂τ
= I − S . (1.69)

Directly integrating the above equation over µ, and multiplying a factor of
µ before integrating, we get

∂H

∂τ
= J − S , (1.70)
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and

∂K

∂τ
= H . (1.71)

The last two equations yield, using K = 1
3
J , the Eddington approximation,

1

3

∂2J

∂τ 2
= J − S . (1.72)

Using Eqs.(1.52) and (1.54), we then have

1

3

∂2J

∂τ 2
= ǫ(J −B) . (1.73)

This equation is called the radiative diffusion equation (this name is
sometimes also referred to Eq.(1.63)). Given the physical structure of the
medium, B(τ) and ǫ(τ) are known. One may solve J , and then S, and then
I.

If ǫ does not depend on τ , we may also define a new effective optical depth
to be

dτ∗ :=
√
3ǫdτ =

√

3αν(αν + σν)dz (1.74)

and have the transfer equation as

∂2J

∂τ 2∗
= J −B . (1.75)

This equation shows the thermalization property of τ∗, which is similar to the
effective optical depth discussed in the last section (the difference is only the
factor

√
3). One can see the thermalization from the solution - for simplicity

assuming B is a constant - that J = B + c1e
−τ∗ + c2e

τ∗ and c2 is usually set
to be zero for a finite value of J at τ∗ → ∞.
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Chapter 2

Polarization of Radiation Fields

In addition to intensity, whose observed distribution in space, time and fre-
quency comprises images, light curves and spectra, polarization is another
important characteristic of radiation, which may reveal the identity of the
radiation mechanism and conditions of the environment where the radiation
is emitted. The direction of polarization is conventionally assigned to be
the direction of the electric field of the radiation. Polarization is usually
described by Stokes parameters. We will start the description from an ide-
alized monochromatic wave first and then discuss that of a more realistic
quasi-monochromatic wave in the second section.

2.1 Polarization and Stokes parameters:

monochromatic waves

A monochromatic wave, at a location designated as ~r = 0, can be described
as the real part of the followng:

~E = (E1x̂+ E2ŷ)e
−iωt , (2.1)

with

E1 = Exeiφx , E2 = Eyeiφy . (2.2)

We will try to keep the convention that quantities with subscript 1 or 2 are
complex (but without the ωt dependence), those with subscript x or y are
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Figure 2.1: An ellipse traced out by the electric field of an electromagnetic
wave at a certain location. Its propogation is in z direction, i.e., out of the
page.

real, and those denoted with E are positive. Therefore we have

Ex = Ex cos(ωt− φx), Ey = Ey cos(ωt− φy) . (2.3)

This is in general elliptically polarized, determined by the phase difference
(φx − φy) and the amplitude Ex and Ey. It is linearly polarized when φx − φy

equals 0 or ±π and circularly polarized when φx−φy equals ±π
2
and Ex = Ey.

One may also express this ellipse with respect to its principal axes, de-
noted as x′- and y′- axes, which are tilted at an angle χ to the original x-
and y- axes, as shown in Figure 2.1. Then in general for an ellipse we have

Ex′ = E0 cos β cosωt, Ey′ = −E0 sin β sinωt , (2.4)
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where E0 cos β and E0 sin β are the magnitude of one half of the two principal
axes, i.e., the length of the semi-major and semi-minor axes. One should
note that in the above expression the time zero has been chosen to be the
time when Ex′ is at its maximum and Ey′ is zero. The angle β takes a value
in −π

2
≤ β ≤ π

2
. If 0 < β < π

2
, the electric field goes clockwise (note the

minus sign in the prescription of Ey′) and it is called right-handed elliptical
polarization (considering propagation in +Z and pointing all the fingers in
the forward direction) or negative helicity (usually for the clockwise sense).
For −π

2
< β < 0, it is left-handed and positive helicity. If β = ±π

4
, it

is circularly polarized, while for β = 0 or ±π
2
, it has linear polarization in

orthogonal directions.
One can link the above two expressions by noting that

Ex = Ex′ cosχ−Ey′ sinχ ; Ey = Ex′ sinχ− Ey′ cosχ

to get

Ex = E0(cos β cosχ cosωt+ sin β sinχ sinωt)

and

Ey = E0(cos β sinχ cosωt− sin β cosχ sinωt) .

Comparing the above with Eq.(2.3), we have

Ex cosφx = E0 cos β cosχ ,

Ex sinφx = E0 sin β sinχ ,

Ey cos φy = E0 cos β sinχ ,

Ey sin φy = −E0 sin β cosχ ,

from which a convenient and conventional way of describing the polarization
state can be defined, with Stokes parameters {I, Q, U, V }, as the following:

I := E2
x + E2

y = E2
0 , (2.5)

Q := E2
x − E2

y = E2
0 cos 2β cos 2χ , (2.6)

U := 2ExEy cos(φx − φy) = E2
0 cos 2β sin 2χ , (2.7)

V := 2ExEy sin(φx − φy) = E2
0 sin 2β . (2.8)
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From the above definition we have

E0 =
√
I (2.9)

sin 2β =
V

I
, (2.10)

tan 2χ =
U

Q
, (2.11)

and

I2 = Q2 + U2 + V 2 . (2.12)

A monochromatic electromagnetic wave therefore can be characterized by
{Ex, Ey, (φx−φy)}, {E0, β, χ}, or {I, Q, U, V }. It is 100% elliptically polarized,
with linear or circular polarization being two extreme cases. With the above
definition, the Stokes parameter I is proportional to intensity or flux, and
V is the circularity: a pure circular polarization when |V | = I and a linear
polarization when V = 0. The sign of V indicates the sense of polarization
(including elliptical one): right-handed when V > 0 (negative helicity) and
left-handed when V < 0 (positive helicity). We also note that for χ → χ+ π

2

we have {Q,U} → {−Q,−U}. Figures 2.2 and 2.3 show visualization of
these polarizations.

Figure 2.2: Visualization of some extreme cases of polarization, where only
I and the indicated Stokes parameter (positive in the upper panels, negative
in the lower) are not zero.
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Figure 2.3: Visualization of some cases of polarization, for which Q2 + U2 +
V 2 = I2 = 1 .

2.2 Polarization and Stokes parameters:

quasi-monochromatic waves

A monochromatic electromagnetic wave is an idealization. In reality we may
have Ex, Ey, and (φx − φy) all being functions of time. If the variation is
fast, polarization may not be well defined. One has an unpolarized light.
If we consider a quasi-monochromatic wave, that is, a wave with a very
small bandwidth △ω (△ω ≪ ω), we may expect that within the coherence
time △t (△t△ω ∼ 1), Ex, Ey, and (φx − φy) vary with time only slowly and
polarization states may still be identified to some extent. We note that in
such a case △t ∼ 1

△ω
≫ 1

ω
, that is, the coherence time is much longer than

the period, because of a narrow bandwidth.
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In real measurements, what is measured is usually the time-averaged
square of the electric field strength. Very often the measuring devices form
a linear combination of the two independent electric field components before
feeding them into the detector. This linear combination can be generally
written as E ′

i = λijEj , i.e.,

E ′
1 = λ11E1 + λ12E2

E ′
2 = λ21E1 + λ22E2 , (2.13)

where λij is the device response, which is a known quantity.
Note that for A = A0e

iωt and B = B0e
iωt, we have 〈Re{A} × Re{B}〉t =

1
2
〈Re{A0B

∗
0}〉t, if the average is over a long enough time and A0 and B0 are

only slowly varying. What is measured is therefore

〈(Re{E ′
1e

−iωt})2〉 =
1

2
〈Re{E ′

1 × E ′∗
1 }〉 (2.14)

=
1

2
(|λ11|2〈E1E

∗
1〉+ λ11λ

∗
12〈E1E

∗
2〉

+ λ∗
11λ12〈E∗

1E2〉+ |λ12|2〈E2E
∗
2〉) . (2.15)

The average over time during the time interval of the measurement mainly
takes care of the fast variation in e−iωt on the left-hand side, while that on
the right-hand side is for the slow variation of E1 and E2.

We see that four quantities, 〈EiE
∗
j 〉, determine the measurement. They

are in fact composed of four real numbers, which can be determined from
measurements. One usually uses Stokes parameters for quasi-monochromatic
waves to express these 〈EiE

∗
j 〉 as the following: (recall Eq.(2.2))

I := 〈E1E
∗
1〉+ 〈E2E

∗
2〉 = 〈E2

x + E2
y 〉 , (2.16)

Q := 〈E1E
∗
1〉 − 〈E2E

∗
2〉 = 〈E2

x − E2
y 〉 , (2.17)

U := 〈E1E
∗
2〉+ 〈E2E

∗
1〉 = 〈2ExEy cos(φx − φy)〉 , (2.18)

V := 1
i
(〈E1E

∗
2〉 − 〈E2E

∗
1〉) = 〈2ExEy sin(φx − φy)〉 . (2.19)

From the Schwarz inequality, which can be derived by considering
∫ |f +λg|2dt ≥ 0 for any arbitrary complex functions f and g and the choice
of λ = − ∫ g∗fdt/ ∫ g∗gdt,

〈E1E
∗
1〉〈E2E

∗
2〉 ≥ 〈E1E

∗
2〉〈E2E

∗
1〉 , (2.20)

24



we have

I2 ≥ Q2 + U2 + V 2 . (2.21)

The equality holds when the ratio E1/E2 is constant in time (f + λg = 0 all
the time). This will be a wave with a 100% polarization, similar to the case
for a monochromatic wave. If E1 and E2 are totally unrelated and there is
no preferred direction in the X-Y plane, we will have Q = U = V = 0, i.e., a
completely unpolarized light. In reality, waves are either partially polarized
or unpolarized.

To describe a partially polarized wave, we note that Stokes parameters
are additive for independent waves. By ‘independent’ we mean there is no
permanent relation between phases of the waves and the relative phases can
be assumed to be randomly and uniformly distributed in {0, 2π}. To see this,
consider that, for a combination of several independent waves,

E1 =
∑

k

E
(k)
1 , E2 =

∑

ℓ

E
(ℓ)
2 (2.22)

and

〈EiE
∗
j 〉 =

∑

k

∑

ℓ

〈E(k)
i E

(ℓ)∗
j 〉 (2.23)

=
∑

k

〈E(k)
i E

(k)∗
j 〉 , (2.24)

where the last equality comes from the fact that phases are random. It leads
to, for a combination of several independent waves,

I =
∑

k

I(k)

Q =
∑

k

Q(k)

U =
∑

k

U (k)

V =
∑

k

V (k) . (2.25)

Therefore, Stokes parameters of a wave can be generally decomposed into










I
Q
U
V











=











√
Q2 + U2 + V 2

Q
U
V











+











I −
√
Q2 + U2 + V 2

0
0
0











. (2.26)
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It is a completely polarized wave plus an unpolarized wave. Such a wave is
called partially polarized. Its degree of polarization is defined as

Π =
Ipol
I

=

√
Q2 + U2 + V 2

I
. (2.27)

For V = 0, i.e., a partially linear polarization, one may decompose the
radiation into a totally linearly polarized component of intensity Ipol and

an unpolarized one of intensity Iunpol. Then, Imax and Imin in certain

two perpendicular polarization directions can be found and measured. Its
polarization degree is then

Π =
Imax − Imin
Imax + Imin

, (2.28)

because Imax = 1
2
Iunpol + Ipol and Imin = 1

2
Iunpol. This can be further

understood by noting that the unpolarized wave can be decomposed into two
waves completely linearly polarized in perpendicular directions as













Iunpol
0
0
0













=













1
2
Iunpol
q
u
0













+













1
2
Iunpol
−q
−u
0













, (2.29)

where (1
2
Iunpol)

2 = q2 + u2 and q/Q = u/U > 0. It also shows that a

partially linearly polarized light can be decomposed into two totally linearly
polarized light, with one polarized in the original polarization direction with
intensity Imax and another one polarized in the orthogonal direction with
intensity Imin. Note that Eq.(2.28) is for linear polarization only.
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Chapter 3

Radiation from
Non-Relativistic Charges

3.1 Larmor’s formula

For non-relativistic charges, i.e., β ≪ 1, the radiation fields are

~Erad(~r) =
q

rc2
(n̂× (n̂× ~̇u)) (3.1)

~Brad(~r) = n̂× ~Erad , (3.2)

where q is the electric charge of the charged particles, r and n̂ are the distance
and the unit vector from the charge to the field point, and ~u is the velocity
of the charge. All the quantities on the right-hand side are evaluated at the
retarded time. We note that ~Erad lies in the plane spanned by ~̇u and n̂. The
magnitude of these fields is

| ~Erad| = | ~Brad| =
qu̇

rc2
sin θ , (3.3)

where θ is the angle between ~̇u and n̂. We therefore have the magnitude of
the Poynting vector as

S =
c

4π
E2 =

c

4π

q2u̇2

r2c4
sin2 θ . (3.4)
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The Poynting vector is an energy flux, that is, S = dW
dtdA

= dW
dtdΩr2

. We
therefore have the power per solid angle in a certain direction as

dP

dΩ
=

q2u̇2

4πc3
sin2 θ . (3.5)

The radiation has a sin2 θ dependence and is strongest in the direction per-
pendicular to the acceleration ~̇u. The total power is

P =
∫

dP

dΩ
dΩ =

2q2u̇2

3c3
. (3.6)

This is called Larmor’s formula, which says the total radiation power of
a non-relativistic charge is proportional to the product of charge squared
and acceleration squared, i.e., q2u̇2. In the following sections we will apply
Larmor’s formula to dipole radiation, Thomson scattering and radiation from
harmonically bound charges.

3.2 Dipole radiation

In the previous section, one single non-relativistic charge is treated. When we
have a system of charges, their radiation fields need to be added at different
retarded times. A certain simplification, however, can be justified for the
non-relativistic case. Let L be the system size and τ be the time scale of
change in the system configuration. The differences in retarded times can be
ignored if τ ≫ L/c. Consider ℓ being the scale of particles’ orbits and u the
speed. The above condition is the same as ℓ/u ≫ L/c, that is, u/c ≪ ℓ/L.
The ’orbit’ scale ℓ is about the scale of the location change of radiating
particles, which is smaller than the size of the whole radiating system L.
Therefore we have u/c ≪ 1, the non-relativistic condition.

In such an approximation, the radiation fields of each charge can be added
together and evaluated at the same time. The field at a large distance can
be written as

~E(~r) =
∑

i

(

qi
ric2

(n̂i × (n̂i × ~̇ui))
)

=
n̂× (n̂× ~̈d)

rc2
, (3.7)
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where ~d is the dipole moment:

~d =
∑

i

qi~ri (3.8)

and r and n̂ are the distance and the unit vector from the system of charges
to the field point. From Eq.(3.5), we have

dP

dΩ
=

| ~̈d|2
4πc3

sin2 θ , (3.9)

and

P =
2| ~̈d|2
3c3

. (3.10)

This is the total power of dipole radiation.
To find the spectrum of dipole radiation, we note that, at the field point,

the electric field as a function of time is, from Eq.(3.7),

E(t) =
d̈

rc2
sin θ . (3.11)

Let’s consider ~̈d ‖ ~̇d ‖ ~d for simplicity. The dipole moment can be written in
terms of its Fourier transform as

d(t) =
∫

d̃(ω)e−iωtdω . (3.12)

Then we have

¨d(t) = −
∫

ω2d̃(ω)e−iωtdω , (3.13)

and

Ẽ(ω) = −ω2d̃(ω)

rc2
sin θ . (3.14)

From dW/dA = c
4π

∫∞
−∞E2(t)dt and

∫∞
−∞ E2(t)dt = 2π

∫∞
−∞ |Ẽ(ω)|2dω, and

then dW/dA = c
∫∞
0 |Ẽ(ω)|2dω, we have dW

dωdA
= c|Ẽ(ω)|2. The differential

spectrum in a certain direction is therefore

dW

dωdΩ
= r2c|Ẽ(ω)|2 (3.15)

=
ω4|d̃(ω)|2

c3
sin2 θ , (3.16)
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and the spectrum as

dW

dω
=

8πω4

3c3
|d̃(ω)|2 . (3.17)

The dipole radiation spectrum is therefore directly related to the frequency
of dipole oscillation. The radiated emission is at the frequency of the dipole
oscillation if the oscillation is sharply concentrated at a certain frequency. It
is, however, not the case for ultra-relativistic charges, which we will discuss
in the next chapter.

3.3 Thomson scattering

The scattering of low energy (hν ≪ mec
2) photons off electrons at rest can be

treated with classical electrodynamics. Photons do not change energy after
scattering, as one can see from the dipole radiation spectrum (the dipole
term in Eq.(3.17)). This is called Thomson scattering. It will also be clear
when we discuss the photon energetics in a Compton scattering, in which
the quantum nature of photons is taken into account. To find the Thomson
scattering cross section, let’s start with Larmor’s formula.

Consider for the moment a linearly polarized incoming light with electric
field ~Ein. We then have ~̇u = q

m
~Ein and Sin = c

4π
| ~Ein|2. Now the differential

power, Eq.(3.5), becomes, taking q = −e and m = me,

dP

dΩ
=

e4

m2
ec

4
Sin sin

2 θ . (3.18)

The differential scattering cross section is dσ
dΩ

= dP
dΩ

/Sin, that is,

dσ

dΩ
=

(

e2

mec2

)2

sin2 θ = r2e sin
2 θ , (3.19)

where re is the classical radius of electrons and θ is the angle between ~Ein

and n̂. This is the differential Thomson scattering cross section for polarized
lights. It does not depend on the scattering angle, but only on the angle
between the polarization of the incoming wave and the direction of the scat-
tered wave. To get the total cross section we integrate the differential one
over all solid angle. The result is σT = 8π

3
r2e .
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Now consider an unpolarized incoming light. We may decompose this light
into two components of mutually perpendicular, linearly polarized lights. We
may further choose ê1 in the plane of n̂ and k̂, where ê1 is the direction of
the polarization of one incoming light component and k̂ is the propagation
direction, and choose ê2 = k̂ × ê1; see Figure 3.1. Therefore the differential

Figure 3.1: n̂ is in the plane of ê1 and k̂.

cross section is

dσ

dΩ
=

1

2

(

dσ

dΩ
(θ) +

dσ

dΩ
(
π

2
)

)

(3.20)

=
r2e
2
(cos2 α + 1) , (3.21)

where the right-hand side is taken from the polarized cross section and α
is the scattering angle, i.e., the angle between incoming and outgoing light,
cosα = n̂ · k̂, as shown in Figure 3.1. This is the differential Thomson
scattering cross section for unpolarized lights. The total cross section is then

σT = 2π
∫

dσ

dΩ
d(cosα)

= πr2e

∫ 1

−1
(cos2 α + 1)d(cosα)

=
8π

3
r2e . (3.22)
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From the above discussion, we see that the total cross section for Thomson
scattering, no matter incoming light being polarized or not, is

σT =
8π

3
r2e = 0.665× 10−24cm2 . (3.23)

This cross section is called the Thomson cross section. It is very often
used to estimate the magnitude of interaction between light and matter.

A polarized light after Thomson scattering still keeps its polarization
state. For unpolarized incoming lights, the scattered light is in general par-
tially linearly polarized. Recall the sin2 θ dependence and consider contri-
butions from the two decomposed components. We can see the polarization
degree will be (See Eq.(2.28) and subsequent discussion.)

Π =
1− cos2 α

1 + cos2 α
. (3.24)

The polarization is in the direction perpendicular to the plane of n̂ and k̂.
The polarization degree Π approaches 100% when α approaches 90◦, i.e.,
perpendicular scattering.

3.4 Radiation from harmonically bound sys-

tems

A charge that is bound to a center by a force like ~F = −k~r = −mω2
0~r

will oscillate sinusoidally with frequency ω0. Such a charge will radiate like
a varying dipole. This model is a highly idealized one but it provides a
classical model for a spectral line. Damping is present because of the loss of
radiated energy. Let’s assume the radiation reaction force can be treated as
perturbation. This condition is to require the time scale for energy change
be much larger than that for particle orbital motion, that is,

mu2

P
≫ u

u̇
, (3.25)

where P = 2q2u̇2

3mc3
is the dipole radiation power. The above condition leads to

u
u̇
≫ τ , where τ = 2q2

3mc3
. For electrons, τ ∼ 10−23s. Under such a condition,

ω0τ is usually much smaller than unity (ω0τ ≪ 1) and the reaction force can

be taken as ~Freact = mτ~̈u (Rybicki & Lightman (1979), Section 3.5).
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For simplicity, let’s consider the charge motion is one dimensional. The
equation of motion reads

ẍ = −ω2
0x+ τ ü . (3.26)

Since the damping is weak, we may approxmate ü in terms of ẋ by taking
x(t) ∝ cos(ω0t+ φ) as

ü ≈ −ω2
0ẋ . (3.27)

Then, the equation of motion turns into that for a damped oscillation:

ẍ+ ω2
0τ ẋ+ ω2

0x = 0 . (3.28)

The solution to this equation is

x(t) = x0e
−Γt/2 cos(ω′t+ φ) , (3.29)

where Γ = ω2
0τ and ω′ =

√

ω2
0 − (Γ/2)2. Since Γ ≪ ω0 (because ω0τ ≪ 1)

and with a certain initial condition, we may have

x(t) = x0e
−Γt/2 cosω0t . (3.30)

The Fourier transform of x(t) is

x̃(ω) =
1

2π

∫ ∞

0
x(t)eiωtdt (3.31)

=
x0

4π
(

1

Γ/2− i(ω + ω0)
+

1

Γ/2− i(ω − ω0)
) . (3.32)

Note that we consider t > 0 only. Since we are interested only in positive
frequencies, we may drop the first term and take the following approximation:

x̃(ω) ≈ x0

4π

1

Γ/2− i(ω − ω0)
, (3.33)

and

|x̃(ω)|2 =
(

x0

4π

)2 1

(ω − ω0)2 + (Γ/2)2
. (3.34)

From Eq.(3.17), we have the spectrum as

dW

dω
=

8πω4q2

3c3

(

x0

4π

)2 1

(ω − ω0)2 + (Γ/2)2
. (3.35)
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One can see from the above that Γ is the full width at half maximum
(FWHM). One can also put the above equation as (taking ω4 ∼ ω4

0)

dW

dω
= (

1

2
mω2

0x
2
0)

(

Γ/2π

(ω − ω0)2 + (Γ/2)2

)

. (3.36)

The first factor is the initial potential energy of the system and the second
factor is a Lorentzian profile, which satisfies the following normalization
condition:

∫ ∞

−∞

Γ/2π

(ω − ω0)2 + (Γ/2)2
dω =

1

π
tan−1

(

2(ω − ω0)

Γ

)

|∞−∞ = 1 . (3.37)

A correct description of atomic or molecular line emission requires quan-
tum mechanics. What is learned in this section is that, through a classical
toy model, one sees that the spectrum of a radiating system with a finite life
time has a Lorentzian profile. The life time △T for the system to stay at
a certain energy level can be taken as △T =

∫∞
0 t|x(t)|2dt/ ∫∞0 |x(t)|2dt, if

|x(t)|2 is considered to be the survival probability after time t. With such an
expression, one finds that △T = 1/Γ. We therefore have the product of life
time and the spectrum FWHM being unity, i.e., △TΓ = 1.

34



Chapter 4

Radiation from Relativistic
Charges

4.1 The Lorentz Transformation, Beaming,

and Doppler effect

The space-time coordinates of an event in two frames, K and K ′, with K ′

moving at speed v towards the +X-axis direction, are related by the Lorentz
transformation:

x′ = γ(x− vt) (4.1)

y′ = y (4.2)

z′ = z (4.3)

t′ = γ(t− v

c2
x) , (4.4)

where

γ =
1√

1− β2
, β =

v

c
. (4.5)

If taking the space-time position four-vector to be x0 = ct, x1 = x, x2 = y,
and x3 = z, the Lorentz transformation can be written as

Λµ
ν =











γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1











, (4.6)
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and we have

x′µ = Λµ
νx

ν . (4.7)

The velocity ~u of a particle in frame K is related to its velocity ~u′ in
frame K ′ as

ux =
dx

dt
=

u′
x + v

1 + βu′
x/c

(4.8)

uy =
u′
y

γ(1 + βu′
x/c)

(4.9)

uz =
u′
z

γ(1 + βu′
x/c)

. (4.10)

It can also be generally written as

u‖ =
u′
‖ + v

1 + βu′
‖/c

(4.11)

u⊥ =
u′
⊥

γ(1 + βu′
‖/c)

. (4.12)

From this we may have the aberration formula for the directions of the
two velocities:

tan θ =
u⊥
u‖

=
u′
⊥

γ(u′
‖ + v)

=
u′ sin θ′

γ(u′ cos θ′ + v)
. (4.13)

The azimuthal angle is the same in the two frames, i.e., φ = φ′ (considering
that uy/uz = u′

y/u
′
z and taking the X-axis to be the polar axis) .

If we consider the case of u′ = c, we will have

tan θ =
sin θ′

γ(cos θ′ + β)
(4.14)

and, from cos θ = u‖/c,

cos θ =
cos θ′ + β

1 + β cos θ′
. (4.15)
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These are the aberration of light. If we further consider the case of θ′ = π
2
,

we have

sin θ =
1

γ
. (4.16)

For γ ≫ 1, we have θ ∼ 1
γ
. It means that all the emission from a relativistic

particle in the forward half hemisphere will be beamed into a forward narrow
beam of half angle 1

γ
. This is called the relativistic beaming effect.

Now let’s consider the Doppler effect of electromagnetic waves emitted
by a moving source. The time interval for a particle to emit one period of
radiation in its comoving frame K ′ is 2π/ω′. That time interval, as measured
in the frame K, will be

△te = γ
2π

ω′ (4.17)

because of time dilation. The time difference of the arrival of the start and
the end of that period of radiation is then

△ta = △te −
d

c
= △te(1−

v cos θ

c
) , (4.18)

where d = △tev cos θ is the distance that the source travels when emitting
that period of radiation. Here v is the speed of the particle, which always
takes a positive value, and θ is the angle between particle motion (i.e. motion
of frame K ′) and photon propagation directions. The observed frequency ω
is then

ω =
2π

△ta
=

ω′

γ(1− β cos θ)
. (4.19)

It can also be written as

ω′ = ωγ(1− β cos θ) (4.20)

and, from Eq.(4.15),

ω = ω′γ(1 + β cos θ′) . (4.21)

Note that θ′ is the angle θ measured in frame K ′. For the case of a receding
source, θ = π, we have

ω =
ω′

γ(1 + β)
= ω′

√

1− β

1 + β
, (4.22)
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that is, a redshift. Usually the redshift z is defined as

z =
λ− λ′

λ′ =
ω′

ω
− 1 . (4.23)

For θ = π and β ≪ 1, we have z ≈ β.
Another way of reaching Eq.(4.20) is to consider that the energy-momentum

four-vector of a photon is

kµ =

(

ω/c
~k

)

, (4.24)

and |~k| = ω/c. Because k1 = (ω/c) cos θ and

k′0 = γ(k0 − βk1) , (4.25)

we reach again Eq.(4.20).

4.2 Emission power of a relativistic particle

Suppose in the frame K ′, a total amount of energy dW ′ is emitted in dt′ by a
particle. The particle is at rest in K ′ instantaneously, so its (non-relativistic)
emission is symmetric in any direction and its opposite direction (recall the
sin2 θ′ dependence). The total momentum of this emitted radiation, d~p ′, is
therefore zero. So, we have the total amount of energy dW in frame K to be
dW = γdW ′ from the Lorentz transformation. We also have dt = γdt′. The
total emitted power in frames K and K ′ is P = dW/dt and P ′ = dW ′/dt′,
so we have

P = P ′ . (4.26)

The total power is a Lorentz invariant for a particle emitting with a front-
back symmetry in its instantaneous rest frame.

Similar to the way to getting to Eq.(4.12), we may derive the relation
between the three-vector acceleration in frames K and K ′ as the following:

a′‖ = γ3a‖ (4.27)

a′⊥ = γ2a⊥ . (4.28)

38



Here again K ′ is the instantaneous rest frame. From the invariance of the
total power, we then have the relativistic version of Larmor’s formula:

P =
2q2

3c3
~a ′ · ~a ′

=
2q2

3c3
(a′2‖ + a′2⊥)

=
2q2

3c3
γ4(γ2a2‖ + a2⊥) . (4.29)

For the angular distribution of power, let’s consider an amount of en-
ergy dW emitted into the solid angle dΩ = d cos θdφ in in the direction at
angle θ to the X-axis. Denoting µ = cos θ and µ′ = cos θ′ and from the
transformation of the energy-momentum four-vector, we have

dW = γ(dW ′ + vdp′x) = γ(1 + βµ′)dW ′ . (4.30)

From Eq.(4.15),

µ =
µ′ + β

1 + βµ′ , (4.31)

we have

dµ =
dµ′

γ2(1 + βµ′)2
.

Since dφ = dφ′, the differential solid angles are

dΩ =
dΩ′

γ2(1 + βµ′)2
,

and we finally have the angular distribution of the emitted energy in the two
frames to be related as

dW

dΩ
= γ3(1 + βµ′)3

dW ′

dΩ′ . (4.32)

The differential power emitted in frameK ′ is simply dP ′/dΩ′ = dW ′/dt′dΩ′,
but in frame K we have two options:

1. The emitted power measured in frame K

dPe

dΩ
=

dW

dtedΩ
=

dW

γdt′dΩ
(4.33)
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2. The received power measured in frame K

dPr

dΩ
=

dW

dtadΩ
=

dW

γ(1− βµ)dt′dΩ
(4.34)

The differential power is therefore

dPe

dΩ
= γ2(1 + βµ′)3

dP ′

dΩ′ =
1

γ4(1− βµ)3
dP ′

dΩ′ (4.35)

and

dPr

dΩ
= γ4(1 + βµ′)4

dP ′

dΩ′ =
1

γ4(1− βµ)4
dP ′

dΩ′ , (4.36)

where the relation γ(1− βµ) = 1
γ(1+βµ′)

as in Eq.(4.20) and Eq.(4.21) is used
for the last equality in the above two equations.

Let’s consider the received power for the moment. If the particle is highly
relativistic, i.e., β ∼ 1, the emission will be concentrated in the forward
direction. Taking

µ = cos θ ≈ 1− θ2

2
, (4.37)

and

β =

√

1− 1

γ2
≈ 1− 1

2γ2
, (4.38)

it follows that

1

γ4(1− βµ)4
≈
(

2γ

1 + γ2θ2

)4

. (4.39)

It is indeed sharply peaked at θ ≈ 0 in the range of order 1/γ, as we had
earlier.

To visualize the angular distribution, let’s consider two special cases, that
is, acceleration parallel and perpendicular to velocity respectively. From
Eq.(3.5), the differential power in K ′ is

dP ′

dΩ′ =
q2a′2

4πc3
sin2Θ′ , (4.40)
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Figure 4.1: Angular distribution of radiation from a relativistic particle in its
rest frame K ′ and the observer’s frame K. Taken from Rybicki & Lightman
(1979), page 144.

where Θ′ is the angle between the acceleration and the emission in K ′. From
Eq.(4.36) and Eq.(4.29), we have

dP

dΩ
=

q2

4πc3
(γ2a2‖ + a2⊥)

(1− βµ)4
sin2Θ′ , (4.41)

We then discuss the two special cases in the following:

For the case of acceleration parallel to velocity, a⊥ = 0 = a′⊥. We also have
Θ′ = θ′, where θ′ is the angle between the velocity and emission in frame K ′.
From Eq.(4.15), or equivalently, µ′ = (µ− β)/(1− βµ), we have

sin2Θ′ =
sin2 θ

γ2(1− βµ)2
(4.42)
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and therefore

dP‖
dΩ

=
q2

4πc3
a2‖

sin2 θ

(1− βµ)6
. (4.43)

This is shown in panel (b) in Figure 4.1. Note that in panel (a) the emission
pattern has a donut shape – axially symmetric about the X ′ axis. For the
extreme relativistic and small angle case, from Eq.(4.39), we see that

(1− βµ) ≈ 1 + γ2θ2

2γ2
(4.44)

and

dP‖
dΩ

≈ 16q2

πc3
a2‖γ

10 γ2θ2

(1 + γ2θ2)6
. (4.45)

For the case of acceleration perpendicular to velocity, a‖ = 0 = a′‖. In such
a case, there is no axial symmetry about the direction of particle’s motion
(the polar direction) and we have cosΘ′ = sin θ′ cosφ′ (i.e., the unit vector
component in the acceleration direction), where φ′ is the azimuthal angle
with φ′ = 0 in the direction of the perpendicular acceleration. We therefore
have

sin2Θ′ = 1− sin2 θ cos2 φ

γ2(1− βµ)2
(4.46)

and

dP⊥
dΩ

=
q2

4πc3
a2⊥

1

(1− βµ)4

(

1− sin2 θ cos2 φ

γ2(1− βµ)2

)

. (4.47)

For the extreme relativistic case, it becomes

dP⊥
dΩ

≈ 4q2

πc3
a2⊥γ

8 1− 2γ2θ2 cos 2φ+ γ4θ4

(1 + γ2θ2)6
. (4.48)

We note that in Eqs.(4.45) and (4.48), the θ dependence only appears in the
form of γθ. Emissions are mainly within the half angle of 1/γ, as shown in
Figure 4.1, where Eq.(4.43) and Eq.(4.47) are plotted with a large γ.
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4.3 Some Lorentz invariant quantities

The four-volume element d4x is Lorentz invariant, i.e., d4x′ = d4x, because
the determinant of the Lorentz transformation matrix, the Jacobian, is unity.
Here we discuss three more sets of invariant quantities:

• The phase-space element. Consider a group of particles occupying
a phase-space element d3~x ′d3~p ′ = dx′

1dx
′
2dx

′
3dp

′
1dp

′
2dp

′
3 in their rest

frame. Since p′0 ∝ p′2 (non-relativistic) and dp′0 ∝ p′dp′, they have no
spread in energy, i.e., dp′0 = 0 (because p′ ≈ 0). Considering the length
contraction, we have dx1 = γ−1dx′

1, dx2 = dx′
2, and dx3 = dx′

3. For
the momentum, we have dp1 = γ(dp′1 + βdp′0) = γdp′1, dp2 = dp′2, and
dp3 = dp′3. Therefore we see that

d3~x d3~p = d3~x ′d3~p ′ . (4.49)

The phase-space element is Lorentz invariant. It follows that the phase-
space density,

f =
dN

d3~xd3~p
, (4.50)

is also Lorentz invariant, since dN is simply the number of particles in
the phase-space element.

• The specific intensity and source function. We may relate the phase-
space density of photons to the specific intensity by considering the
energy flux in a certain direction as

IνdνdΩ = c× (hνfp2dpdΩ) . (4.51)

Noting that p = hν/c, we find that Iν/ν
3, as being proportional to the

phase-space density f , is an invariant, i.e.,

I ′ν
ν ′3 =

Iν
ν3

. (4.52)
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Since the source function appears in the radiation transfer equation as
the difference (Iν − Sν), we may conclude that Sν behaves like Iν in
transformation. So we also have

S ′
ν

ν ′3 =
Sν

ν3
. (4.53)

• The absorption and emission coefficients. The optical depth τ is an
invariant, since e−τ gives the fraction of photons passing through a
medium, which is a countable number. Considering radiation passing
through a slab of medium of thickness ℓ at an angle θ to the slab’s
normal direction, the optical depth is then

τ = αν
ℓ

cos θ
= ναν

ℓ

ν cos θ
. (4.54)

Let’s have K ′ as moving parallel to the slab. Then, ν cos θ is the four-
momentum component of the photon perpendicular to the relative mo-
tion of the frames K and K ′ and therefore does not change. The
thickness ℓ is also the length in the perpendicular direction, so we have
ναv to be Lorentz invariant:

ν ′α′
ν = ναν . (4.55)

The emission coefficient is jν = ανSν , so we have

j′ν
ν ′2 =

jν
ν2

. (4.56)
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Chapter 5

Bremsstrahlung

In this and the next chapters we will describe emissions from high-energy
charged particles. When they emit photons in the Coulomb field of an ion,
the emission is called bremsstrahlung. When they do so in a magnetic field,
the emission is called synchrotron radiation. High-energy charges can also
produce high-energy photons by scattering photons in a photon field. This
kind of scattering, or emission, is called inverse Compton scattering. The
properties of these emissions can be obtained by QED calculations. Semi-
classical approaches of derivation can be found in many textbooks, such as
Rybicki & Lightman (1979). We will mainly describe their properties and
this ‘lecture notes’ may serve as something like a reference book or manual
for readers to easily find the needed formulae.

To start, we note that collisions between the same kind of particles do
not produce bremsstrahlung in the dipole approximation. That is because
the electric dipole moment

∑

qi~r of the same kind of particles is proportional
to their center of mass,

∑

mi~r, which is a constant of motion. Besides, in
the collision of electrons and ions, most of the radiated energy comes from
electrons because of their much lower mass.

5.1 Bremsstrahlung of a single electron

We first consider one single electron passing through the Coulomb field of an
ion of charge Ze with speed v at infinity and an impact parameter b. The
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bremsstrahlung spectrum for such an encounter is

dE

dω
(ω, v, b) = 8

3
Z2e6

πc3m2
eb

2v2
, for ω ≪ γv

b

0 , for ω ≫ γv

b
(5.1)

(See also Jackson (1975), p.722; Longair (2011), p.165), where ω is the an-
gular frequency of the emission and γ is the Lorentz factor of the electron.

For a single-speed population of electrons of number density ne and speed
v, the emissivity at frequency ω in a population of ions of charge Ze and
number density ni is

dE

dω dV dt
=

∫ bmax

bmin

nev 2πb db
dE

dω
ni

=
16

3

Z2e6neni

c3m2
ev

ln

(

bmax

bmin

)

(5.2)

The dependence on ω is weak and only in the bmax in the logarithm (bmax

cannot be too large for a given ω). This emissivity applies only approximately
up to ωmax, where h̄ωmax = 1

2
mev

2. The determination of bmin is not trivial.
The following is the result of a more accurate QM calculation.

The emissivity for given ni, ne, v, and ω is

dE

dω dV dt
=

16

3

π√
3

Z2e6neni

c3m2
ev

gff(v, ω) , (5.3)

where

gff(v, ω) =

√
3

π
ln Λ (5.4)

is the Gaunt factor of bremsstrahlung, and

lnΛ = ln
(

vi + vf
vi − vf

)

= ln









1 +
√

1− h̄ω
1
2
mv2

i

1−
√

1− h̄ω
1
2
mv2

i









, (5.5)

where we have used 1
2
mv2i = 1

2
mv2f +h̄ω. (Longair (2011), p.167; Chiu (1968),
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 x1

3

ln 

Figure 5.1: ln Λ in the bremsstrahlung gaunt factor. The X-axis is x =
h̄ω/1

2
mv2i .

p.223). We note that although the Gaunt factor goes to infinity at ω = 0
(Figure 5.1), its integration over ω gives a finite result.

The energy loss rate of electrons is then

dE

dt
=

1

ne

∫ h̄ω= 1
2
mv2

h̄ω=0

dE

dω dV dt
dω

∝ niZ
2v

∝ E
1
2 , (5.6)

where we have taken the Gaunt factor to be roughly constant. For ultra-
relativistic cases, a similar result for dE/dωdV dt can be found (Rybicki &
Lightman (1979), Eq.(5.24); Longair (2011), Eq.(6.71)). Since the ω depen-
dence is weak and v ∼ c, h̄ωmax ∼ E, we have approximately

dE

dt
∝ E (5.7)

(Longair (2011), p.175). All the above are for mono-energetic electrons. In
general and in practice electrons usually have an energy spectrum.

5.2 Thermal bremsstrahlung

In thermal equilibrium, electrons follow the Maxwellian distribution:

dP ∝ v2 exp(−mv2

2kT
)dv . (5.8)
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The emissivity that we discussed in the last section is then

dE(T, ω)

dω dV dt
=

∫∞
vmin

dE(v,ω)
dω dV dt

v2 exp(−mv2

2kT
)dv

∫∞
0 v2 exp(−mv2

2kT
)dv

. (5.9)

Note that since 1
2
mv2 ≥ h̄ω, we have vmin =

√

2h̄ω/m.

After integration, we have the thermal bremsstrahlung emissivity εffν =
dE(T,ν)
dν dV dt

as

εffν =
32πe6

3mec3

√

2π

3kme

Z2neniT
− 1

2 exp(− hν

kT
)ḡff(T, ν)

= 6.8× 10−38Z2neniT
− 1

2 exp(− hν

kT
)ḡff(T, ν) (5.10)

in gaussian units. The velocity-averaged Gaunt factor, ḡff(T, ν), is of order
of unity (5 > ḡff(T, ν) > 1 for 10−4 < hν

kT
< 1). In the emissivity, the

factor T− 1
2 comes from the 1/v dependence in the single electron emissivity,

and the factor exp(− hν
kT

) comes from vmin. The (optically thin) thermal

 log (hv/kT)

log ε
hv~kT

Figure 5.2: An optically-thin thermal bremsstrahlung (OTTB) spectrum.

bremsstrahlung spectrum is quite flat until hν ∼ kT .
The total power per unit volume is

εff =
∫

εffνdν

=

(

2πk

3m

) 1
2 32πe6

3hmc3
Z2neniT

1
2 ḡB(T )

= 1.4× 10−27Z2neniT
1
2 ḡB(T ) (5.11)
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in gaussian units. ḡB(T ) is the frequency average of ḡff(T, ν). Its numerical
value is between 1.1 and 1.5, so taking 1.2 should be good enough. For higher
temperatures, relativistic corrections can be found as

εffrel = εff(1 + 4.4× 10−10T/K) (5.12)

(Rybicki (1979), p.165).
For thermal bremsstrahlung absorption, let’s consider in a thermal plasma

in which only bremsstrahlung occurs. From Kirchhoff’s law, we have

jffν
αff
ν

= Bν(T ) =
2ν2

c2
hν

exp( hν
kT
)− 1

. (5.13)

Noting that jffν = εffν
4π
, we get

αff
ν =

jffν
Bν

=
4

3

e6

mch

√

2π

3km
Z2neniT

− 1
2ν−3(1− exp(−hν

kT
))ḡff(T, ν)

= 3.7× 108Z2neniT
− 1

2 ν−3(1− exp(−hν

kT
))ḡff(T, ν) (5.14)

in gaussian units. We can see that absorption is strong for low frequencies.
The corresponding opacity is therefore large for those frequencies and the
plasma becomes optically thick. The thermal bremsstrahlung spectrum will
behave as ν2 like the Planck function at low frequencies and then turn into
an optically thin thermal bremsstrahlung spectrum at higher frequencies.

The Rosseland mean free-free absorption coefficient is

αff
R = 1.7× 10−25T− 7

2Z2neniḡff,R(T ) , (5.15)

where the temperature dependence can be understood from the factor of ν−3.
Noting that α = nσ = ρκ, we have

κff
R ∝ ρT− 7

2 , (5.16)

which is called the Kramer opacity. The Rosseland mean opacity is exten-
sively used in stellar astrophysics.
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log Fv hv~kT

 log v

~v2

Figure 5.3: A broad-band thermal bremsstrahlung spectrum. Turning points
in the spectrum may provide information about density and temperature of
the emitting plasma.
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Chapter 6

Synchrotron and Curvature
Radiation

6.1 Synchrotron and curvature radiation of a

single electron

Emission of charged particles in a magnetic field has three names. The
cyclotron radiation is referred to that of non-relativistic charges circulating
(or spiraling) in a magnetic field and the synchrotron radiation is that for
relativistic charges. The curvature radiation is the radiation of charges
moving along curved magnetic field lines in their lowest Landau level.

The motion of a charged particle in a magnetic field.

The equation of motion reads

dγm~v

dt
=

q

c
~v × ~B . (6.1)

Since the Lorentz force is always perpedicular to the velocity, if radiation
loss is ignored, the energy of the particle remains constant, i.e., dγ

dt
= 0.

Therefore,

γm
d~v

dt
=

q

c
~v × ~B , (6.2)
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which in turn gives

d~v‖
dt

= 0 , (6.3)

and

γm
d~v⊥
dt

=
q

c
~v⊥ × ~B . (6.4)

The gyrofrequency and the cyclotron frequency.

The motion of a charged particle in a magnetic field can therefore be decom-
posed into a motion parallel to the field direction and a gyromotion around
the field. The angular frequecny of this gyromotion is

ωg =
qB

γmc
, (6.5)

which we call the gyration frequency, or gyrofrequency. The gyroradius rg is
then

rg =
v⊥
ωg

=
γmvc sinα

qB
=

pc

q

sinα

B
, (6.6)

where α is the pitch angle, i.e., the angle between ~v and ~B, and pc
q
is some-

times called the rigidity. We distinguish the terminology of the gyrofrequency
and the cyclotron frequency by defining the latter as

ω0 =
qB

mc
. (6.7)

In Rybicki & Lightman (1979) the gyrofrequency is denoted as ωB, while
in some literatures ωB, or sometimes ωc, is used to refer to the cyclotron
frequency. To avoid this notation confusion, we use ωg and ω0 in this lecture
notes.

The curvature radius and the characteristic frequency.

Consider an arc path of a charged particle’s motion as shown in Figure 6.1,
where the arc is the path within which the particle’s radiation beam covers
the direction towards a distant observer to the right of this figure. What
we want to find is the reciprocal of the time interval of an observed light
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21

ρ θ

s
Figure 6.1: A particle moving along an arc of curvature radius ρ.

pulse, expressed in terms of the particle energy and the curvature radius or
the magnetic field strength. From Figure 6.1, we have ∆θ ∼ 2

γ
from the

relativistic beaming effect. We have also ρ∆θ = ∆s and v∆t = ∆s, and
therefore ∆t = 2ρ

γv
, where ∆t is the time for the particle to move from point

1 to point 2.
To link the curvature radius ρ of the gyromotion with the field strength,

note that γm∆~v
∆t

= q
c
~v × ~B and |∆~v| = v∆θ, and then we have

ρ =
∆s

∆θ
=

v∆t

|∆~v|/v =
v2γmc

qBv sinα
=

v

ωg sinα
. (6.8)

At this point, the relation between the gyroradius and the curvature radius
can be found, by noting that ωgrg = v sinα, to be rg = ρ sin2 α.

The time interval of the observed pulse is then

∆tob = ∆t(1− v

c
)

=
2

γωg sinα

1

2γ2
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=
1

γ3ωg sinα
, (6.9)

where we have expressed ∆t in terms of ωg and taken β = 1 − 1
2γ2 for rela-

tivistic particles. The γ3 dependence (for a given ρ) comes from the beaming
effect and the kinetic Doppler effect.

Conventionally a factor of three halfs is added to the definition of the
characteristic frequency for synchrotron radiation:

ωc =
3

2
γ3ωg sinα

=
3

2
γ2 qB

mc
sinα . (6.10)

For curvature radiation, the characteristic frequency is simply

ωc =
3

2
γ3 c

ρ
, (6.11)

where the speed v is approximated with the speed of light c, as in most cases
of interest.

The single-electron synchrotron radiation spectrum.

The synchrotron radiation power per frequency of a single electron in the two
perpendicular linear polarization states as shown in Figure 6.2 are (Rybicki
& Lightman 1979, p.179)

dP⊥
dω

=

√
3

4π

q3

mc2
B sinα(F (x) +G(x)) , (6.12)

and

dP‖
dω

=

√
3

4π

q3

mc2
B sinα(F (x)−G(x)) , (6.13)

with

F (x) = x
∫ ∞

x
K 5

3
(ξ)dξ , (6.14)

G(x) = xK 2
3
(x) , (6.15)
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and

x =
ω

ωc

, (6.16)

where K’s are the modified Bessel functions of order 5
3
and 2

3
and ‖ and

⊥ are for different polarizations defined in Figure 6.2. They are paralle
and perpendicular to the projection of the magnetic field on the plane of
the sky. This notation is opposite to that used in Jackson (1999), which
takes the plane of motion, and therefore the direction of acceleration, as the
reference to define ‖ and ⊥. One should also note that the larger power

e

e

X

Y

Z

v

n

Figure 6.2: The instantaneous orbital plane is chosen to be the X − Y plane
with the particle velocity in the X direction. The local magnetic field direc-
tion is in the X − Z plane because it is perpendicular to the acceleration,
which is in the Y -axis direction. The direction towards the observer, n̂, is
chosen in the X − Z plane. The directions of polarization are ê⊥ ‖ ŷ and
ê‖ = n̂× ê⊥.

in the perpendicular polarization component is rooted from the fact that
the polarization direction of radiation is in the plane spanned by particle
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acceleration and the line of sight. Particle acceleration direction is apparently
perpendicular to the local magnetic field.

The total power spectrum is

dP

dω
=

√
3

2π

q3

mc2
B sinαF (x) , (6.17)

and

F (x) ∼ 4π√
3Γ( 1

3
)

(

x
2

) 1
3 , x ≪ 1

(

π
2

) 1
2 x

1
2 exp(−x) , x ≫ 1 . (6.18)

The function F (x) is plotted in Figure 6.3.

−4 −1 0 log x

log F(x)

0

−1

maxx      ~ 0.29

Figure 6.3: The synchrotron radiation spectrum of a single electron. x =
ω/ωc.

The total emitted power.

Integrating over the frequency, we obtain the total emitted power as

P =
∫

dP

dω
dω

=

√
3

2π

q3

mc2
B sinα

∫ ∞

0
F (x)dx(

3

2
γ3ωg sinα)

=
2

3

q2

c
γ2ω2

0 sin
2 α

= − γ̇synmc2 (6.19)
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where
∫∞
0 F (x)dx = 8π

9
√
3
has been employed. We note that this is the en-

ergy loss rate via synchrotron radiation, and it depends quadratically on the
particle energy γ and on the field strength B. It may be expressed in terms
of the changing rate of the electron’s Lorentz factor, as shown in the last
equality in the above.

This result can also be obtained from the relativistic version of Larmor’s
formula P = 2q2

3c3
γ4(a2⊥ + γ2a2‖) and noting that a‖ = 0 and a⊥ = ωgv⊥, that

is,

P =
2q2

3c3
γ4ω2

gv
2
⊥

=
2q2

3c
γ2ω2

0β
2
⊥ . (6.20)

We may further re-write this result in terms of Thomson cross section,
σT = 8π

3
( e2

mc2
)2, and the magnetic field energy density, uB = B2

8π
, to get

P = 2σTcuBγ
2β2

⊥. Noting that β⊥ = β sinα and 1
4π

∫

sin2 αdΩ = 2
3
, the

averaged power, for a uniform distribution in the pitch angle, is

〈P 〉syn =
4

3
σTcuBγ

2β2 . (6.21)

This should be compared with the inverse Compton energy loss rate γ̇icmc2 =
−4

3
σTcuphγ

2β2 for an isotropic incident photon field discussed in the next
chapter.

The curvature radiation.

With the replacement c
ωg sinα

⇒ ρ we have the spectrum for curvature radia-
tion:

dP⊥
dω

=

√
3

4π

q2

ρ
γ(F (x) +G(x)) (6.22)

dP‖
dω

=

√
3

4π

q2

ρ
γ(F (x)−G(x)) (6.23)

dP

dω
=

√
3

2π

q2

ρ
γF (x) (6.24)

The total power is

P =

√
3

2π

q2

ρ
γ

8π

9
√
3

3

2
γ3 c

ρ
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=
2

3

q2c

ρ2
γ4

= − γ̇curmc2 . (6.25)

The curvature radiation energy loss rate depends on the particle energy in
the 4th power. Again, this can be obtained through P = 2q2

3c3
γ4( c

2

ρ
)2.

6.2 Synchrotron and curvature radiation of a

population of electrons

The spectral index.

Consider a population of electrons with the following energy distribution:

NE,edE = C E−pdE , E1 < E < E2 . (6.26)

From Eq.(6.17) we have the power spectrum for a population of electrons as

dP

dω
∝
∫ γ2

γ1
F (

ω

ωc
) γ−pdγ , (6.27)

in which the integration over energy is expressed in terms of the Lorentz
factor, which enters the function F via the characteristic frequency ωc. In
this way one may derive the dependence of the power spectrum on frequency
ω and obtain the spectral index of the resultant power-law spectrum. Noting
that ωc ∝ γ2, one may find that dP

dω
∝ ω−(p−1)/2.

One may also take another similar approach by considering

Pωdω ∝ γ̇γ−pdγ , (6.28)

in which Pω, as usual, is
dP
dω

, and a certain particle energy range dγ and its
corrersponding major radiation frequency dω are considered. For synchrotron
radiation, we have γ̇ ∝ γ2, ω ∼ ωc ∝ γ2, and dγ ∝ ω− 1

2dω, therefore

Pωdω ∝ ω− p−1

2 dω . (6.29)

For curvature radiation, we have γ̇ ∝ γ4, ω ∼ ωc ∝ γ3, and dγ ∝ ω− 2
3dω.

Therefore we have

Pωdω ∝ ω− p−2

3 dω . (6.30)
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The synchrotron and curvature radiation spectra of a power-law distribution
of electrons with power index p are also a power law with power index (p−1)/2
and (p − 2)/3 respectively. Note that the spectrum referred here is the one
proportional to the flux density (Fν), i.e., to energy flux per unit frequency. It
is different from that of energy flux per decade of frequency (νFν) or photon
number flux per unit energy (ṄE,γ ∝ Fν/ν), which are used in different
occasions.

The polarization.

Synchrotron radiation from a single electron in a narrow bandwidth, as ob-
served from a certain direction, is in general elliptically polarized with its
major axis perpendicular to the magnetic field direction in the sky. For a
population of electrons with a smooth distribution in pitch angles, elliptical
polarization will be cancelled to become partial linear polarization in the
direction perpendicular to the magnetic field in the sky. The polarization
degree of this linear polarization at a certain frequency (within a narrow
frequency band) for a single-energy population is

Π(ω) =
Pω,⊥ − Pω,‖
Pω,⊥ + Pω,‖

=
G(x)

F (x)
, (6.31)

whose numerical value is between 0.5 and 1.
For the radiation integrated over frequencies, noting that
∫∞
0 G(x) dx
∫∞
0 F (x) dx

=
3

4
, (6.32)

we therefore have

Π =
P⊥ − P‖
P⊥ + P‖

= 0.75 . (6.33)

These results apply to both synchrotron and curvature radiation. In the
above, we integrate x from 0 to ∞. In fact, we should only consider x up
to a frequency so that h̄ω < γmec

2. It leads to x < 1
γ
mec2

h̄ω0
for synchrotron

radiation, neglecting the factors of 3
2
and sinα. It is then required that

γ ≪ mec2

h̄ω0
for the above result to be good. For curvature radiation, it is

x < 1
γ2

mec2

h̄c/ρ
and γ2 ≪ mec2

h̄c/ρ
.
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Figure 6.4: Polarization degree as a function of frequency for a single-energy
population synchrotron/curvature radiation. x = ω/ωc.

For a population of electrons distributed as NEdE = CE−pdE, we have
for the synchrotron radiation

Π(ω) =

∫∞
0 G(x)γ−pdγ
∫∞
0 F (x)γ−pdγ

, (6.34)

to take into account contributions from electrons of different energy. Since
x = ω/ωc and ωc ∝ γ2, we have, for a fixed ω, γ ∝ (ω

x
)
1
2 and dγ ∝ ω

1
2x− 3

2dx.
Therefore,

Π =

∫∞
0 G(x) x

p−3

2 dx
∫∞
0 F (x) x

p−3

2 dx

=
p+ 1

p+ 7
3

, (6.35)

which depends on the power index p but not on the frequency ω. This state-
ment is probably not valid for a very large ω, which is mainly due to a
very large γ. As discussed below Eq.(6.33), it is required that γ ≪ mec2

h̄ω0

for the above result to be good. A so-called critical field is so defined that
h̄ω0 = mec

2, which gives the critical field Bq as

Bq = 4.4× 1013G . (6.36)
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Around and above this field strength, classical electrodynamics no longer
provides a good description. Way below that field strength, the validity
range in ω of the above result is fairly large.

For curvature radiation, similarly, since x = ω/ωc and ωc ∝ γ3, we have,

for a fixed ω, γ ∝ (ω
x
)
1
3 and dγ ∝ ω

1
3x− 4

3dx. Therefore,

Π =

∫∞
0 γ G(x)γ−pdγ
∫∞
0 γ F (x)γ−pdγ

=

∫∞
0 G(x) x

p−5

3 dx
∫∞
0 F (x) x

p−5

3 dx

=
p+ 1

p+ 3
. (6.37)

One should note the γ factor in front of G and F . Consideration of the ω

validity range similar to that for the synchrotron radiation gives γ ≪
√

mec2

h̄c/ρ
.

When the latter is unity, we have ρ = h̄
mec

, the reduced Compton wavelength
of electrons. For the classical description to be good, the curvature radius
should be way much larger than the Compton wavelength.

Some useful relations.

∫ ∞

0
xµF (x)dx =

2µ+1

µ+ 2
Γ(

µ

2
+

7

3
)Γ(

µ

2
+

2

3
) (6.38)

∫ ∞

0
xµG(x)dx = 2µΓ(

µ

2
+

4

3
)Γ(

µ

2
+

2

3
) (6.39)

Γ(n+ 1) = nΓ(n) (6.40)

Γ(n) = (n− 1)! (6.41)

Γ(
1

2
) =

√
π (6.42)

Γ(1) = 1 (6.43)

The synchrotron self-absorption.
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For synchrotron radiation, Fν ∝ ν− p−1

2 , the brightness temperature will be

kTb =
c2

2ν2

Fν

Ω

∝ ν− p+3

2 , (6.44)

which will be very high at low frequencies. On the other hand, self-aborption
is also expected to be significant by the consideration of detailed balance.
For thermal radiation, the source function Sν is proportional to the thermal
temperature T of the system as Sν ∝ ν2T for low frequencies. The brightness
temperature Tb as derived from the specific intensity is always smaller than
the system’s thermal temperature. Tb approaches T only when the system
is extremely optically thick. For non-thermal populations, although rigorous
derivation may do better (Rybicki & Lightman (1979), page 189), we may
take an anology by considering the source function to be Sν ∝ ν2TK, where
the kinetic temperature Tk represents the particle energy, that is, Tk ∝ γ. By
doing so, we are considering that strong interaction of radiation and particles
results in multi-temperature quasi-thermalization of particles to the extent of
having corresponding quasi-thermal temperatures of the order of their kinetic
temperatures. The brightness temperature approaches Tk when the system
is optically thick at low frequencies. Therefore, for such low frequencies,

Fν ∝ ν2Tk

∝ ν+ 5
2 , (6.45)

where in the last step we have employed γ ∝ ν
1
2 for the major frequency

(characteristic frequency) being proportional to γ2. This behavior is sketched
in Figure 6.5.
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Figure 6.5: A broad-band synchrotron radiation spectrum.
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Chapter 7

Compton Scattering

7.1 Compton scattering

When the incident photon energy is comparable to the electron rest energy,
the discussion of Thomson scattering is no longer valid because of the quan-
tum nature of photons. For an electron at rest, the change of the photon
energy after scattering is described as the following:

ε1
ε

=
1

1 + ε(1− cosα)
, (7.1)

where ε is the incident photon energy normalized by the electron rest energy,
i.e., ε = hν

mec2
, ε1 is that of the scattered photon, and α is the scattering angle.

This can be re-arranged to be

cosα = 1 +
1

ε
− 1

ε1
. (7.2)

It can also be expressed in terms of wavelengths as

∆λ

λ
=

λ1 − λ

λ
= ε(1− cosα) . (7.3)

It shows that the fractional change in wavelength is of the order of ε. The
above equation can also be arranged to be

∆λ =
h

mec
(1− cosα) , (7.4)
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Figure 7.1: The differential Klein-Nishina cross section. (Taken from Mark
Bandstra, 2010, PhD thesis, UC Berkeley)

and the factor h
mec

is called the Compton wavelength of the electron, about
2.4 pm.

For unpolarized incident photons, the cross section of the scattering is the
Klein-Nishina cross section (Heitler 1954):

dσ

dΩ
=

r2e
2

ε21
ε2

(

ε

ε1
+

ε1
ε
− sin2 α

)

. (7.5)

We note that there is also α dependence in ε/ε1. This differential cross
section is always smaller than that of the Thomson scattering, to which it
approaches when ε1 ∼ ε; see Fig. 7.1.

The total cross section can be found to be

σKN = πr2e
1

ε

(

(1− 2(ε+ 1)

ε2
) ln(2ε+ 1) +

1

2
+

4

ε
− 1

2(2ε+ 1)2

)

. (7.6)
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For ε ≪ 1,

σKN ∼ 8

3
πr2e(1− 2ε) = σT(1− 2ε) (7.7)

and for ε ≫ 1,

σKN ∼ πr2e
1

ε
(ln(2ε) +

1

2
) . (7.8)

To get the above approximation, ln(1 + x) ∼ x− x2

2
is used for x ≪ 1.

εlog 

σ log 
KN σ

~
~ T ε 1

1
ε~

Figure 7.2: The Klein-Nishina cross section.

For polarized incident photons,

dσ

dΩ
=

r2e
2

ε21
ε2

(

ε

ε1
+

ε1
ε
− 2 sin2 α cos2 η

)

, (7.9)

where η is the angle between the polarization of the incident photon and the
scattering plane. One can see that the scattering is preferred in the direction
of η = π

2
(Lei et al., 1997). This property may be employed to measure the

polarization of incoming photons in Compton telescopes.
In consideration of detector designs, the recoil energy of electrons, which

will be deposited in the detector and turned into electric signals, is more
relevant. The electron recoil energy is

Ee = mec
2(ε− ε1)

= mec
2ε(1− 1

1 + ε(1− cosα)
) . (7.10)
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The minimum recoil energy is zero when α = 0, and the maximum is Ee,max =
mec

2ε( 2ε
1+2ε

) when α = π. The gap between the incident photon energy and
the maximum electron recoil energy, i.e., the energy of the back-scattered
photon, which is also the lowest possible energy of a scattered photon for a
given ε, is then

εb = ε−Ee,max/mec
2

= ε(
1

1 + 2ε
) . (7.11)

For 2ε ≫ 1, εb approaches
1
2
. Note that we always have dεb/dε > 0. For very

high energy incident photons, Ee,max approaches the energy of the incident
photon.

7.2 Inverse Compton scattering

S S’

v

ε ε

θ
θ

θ
θ

ε
1

1
1

1

ε ’

’
’

’

comoving frame, electrons at restLab frame, electrons moving

Figure 7.3: Notations used in analyzing inverse Compton scattering.

If electrons are very energetic, photons after scattering tend to gain en-
ergy, instead of losing. We may take the approach similar to what is usually
done for Fermi accelaration to consider the photon energy in the co-moving
frame of electrons and then transform that back to the observer’s frame;
see Figure 7.3 and notations defined therein. Recall that a photon’s energy-
momentum four vector is (k0, ~k), where k0 = ε/c and |~k| = k0. It is clear
that

ε′ = εγ(1− β cos θ) , (7.12)
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ε′1 = ε′
1

1 + ε′(1− cosα′)
, (7.13)

and

ε1 = ε′1γ(1− β cos(π − θ′1)) = ε′1γ(1 + β cos θ′1) , (7.14)

therefore

ε1 =
εγ2(1− β cos θ)(1 + β cos θ′1)

1 + εγ(1− β cos θ)(1− cosα′)
. (7.15)

We then have

ε1 ∼ γ2ε , for εγ ≪ 1 . (7.16)

The photon energy is boosted by a factor of γ2. The highest energy that a
photon can reach in this regime is ε1 = 4γ2ε for the case of head-on collision
(θ = π, θ′1 = 0). On the other hand,

ε1 ∼ γ , for εγ ≫ 1 . (7.17)

In such a case electrons give almost all the energy to photons. But note that
it is also possible that, when ε > γ, photons in fact give energy to electrons.
The scattering cross section for εγ ≫ 1 is smaller than that for εγ ≪ 1.

The inverse-Compton emitted power

We now consider an electron colliding with a distribution of photons to
lose energy via inverse Compton scattering. To derive the emitted power,
one may in principle consider the emitted spectrum and integrate that over
all frequencies. That may, however, depend on the specific distribution of
the photon bath. Instead, in the following we take another approach to
obtain a more general result. Let f be the phase space distribution function
of photons, that is, dN = fd3pd3x, which is a Lorentz invariant (because
phase space volume is invarint; see Rybicki & Lightman 1979, p.145). The
differential number density of photons at a certain energy ε is then

dn = fd3p = gεdε . (7.18)
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Since dn/ε is invariant (Blumenthal & Gould 1970; see also the notes below),
we have

gεdε

ε
=

g′εdε
′

ε′
(7.19)

for the ambient photon field as described in different inertial frames.
The total power emitted by an electron in its rest frame is

dE ′
1

dt′
= cσT

∫

ε′g′εdε
′ , (7.20)

where we have restricted ourselves to the case of εγ ≪ 1 so that the Thomson
cross section can be used and the energy change in the electron’s rest frame
is also neglected, i.e., that ε′1 = ε′ has been adopted. Note that the emitted
power for a front-back symmetric radiation pattern (in the instantaneous
rest frame of the radiating particle) is Lorentz invariant (Eq.(4.26)). We
then have

dE1

dt
= cσT

∫

ε′2
g′εdε

′

ε′

= cσT

∫

ε′2
gεdε

ε

= cσTγ
2(1− β cos θ)2

∫

εgεdε . (7.21)

The last integral is in fact the photon energy density uph. In this equation,
θ is the angle between velocities of the electron and incident photons.

The inverse Compton energy loss rate in an isotropic distribution
of photons

The average of (1 − β cos θ)2 over all directions is 1 + 1
3
β2. We therefore

have
dE1

dt
= cσTγ

2(1 +
1

3
β2)uph (7.22)

For the energy loss rate of electrons, we should take into account the original
energy carried by the incident photons per unit time, which is simply cσTuph.
So, the energy loss rate is

Pic = cσT(γ
2(1 +

1

3
β2)− 1)uph

=
4

3
σTcγ

2β2uph . (7.23)
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This should be compared with Psyn.
Now let’s consider a population of electrons. If the electrons have a certain

distribution with the number density being dne = Ne(γ)dγ, the total energy
loss rate per unit volume is just

P =
∫

PicNe(γ)dγ . (7.24)

If the electrons are in a non-relativistic thermal distribution, we have γ ≈ 1,
〈β2〉 = 〈 v2

c2
〉 = 3kT

mc2
, and the energy loss rate per unit volume is

P =

(

4kT

mc2

)

cσTneuph . (7.25)

This equation says that, averagely speaking for each scattering, the ratio of
electron’s energy loss to the incident photon energy is

(

4kT
mc2

)

. This is only
valid for photons with energy ε ≪ 1, because we make the assumption that
ε′1 = ε′ when using Eq.(7.23). It is also required that ε ≪ kT

mc2
since possible

energy transfer from photons to electrons is ignored.

The inverse Compton scattering spectrum

1

1

f(x) 

 x

Figure 7.4: The function f(x) in the single electron inverse Compton spec-
trum.
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For an isotropic, monochromatic photon field at energy ε and number
density nph scattered off an electron of γ ≫ 1 in the Thomson limit (γε ≪ 1),
the inverse Compton scattering spectrum (energy per unit time per unit
energy) is

dP

dε1
= 3σTcnphxf(x) , (7.26)

in which x = ε1
4γ2ε

and f(x) = 2x ln x + x + 1 − 2x2 (Blumenthal & Gould

1970; Note that 4γ2ε is the highest possible energy of the scattered photon
and this dP

dε1
is equal to j(ε1)× ε1

N
in Eq.(7.26a) of Rybicki & Lightman (1979)).

The function f(x) and the inverse Compton scattering spectrum of a single

0 log x

log dP
dε

1ε
1

~

X~0.61

Figure 7.5: The single-electron, isotropic-monochromatic-photon inverse
Compton spectrum.

electron in an isotropic single-energy photon field are plotted in Figures 7.4
and 7.5, respectively.

For a distribution of photons dnph = nph,εdε scattered off electrons of
a power-law distribution dne ∝ γ−pdγ, still isotropic and in the Thomson
limit, the emissivity is

dP

dV dε1
∝
∫

nph,εγ
−pxf(x)dεdγ . (7.27)
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Since x = ε1
4γ2ε

, we have γ = 1
2
( ε1
ε
)
1
2x− 1

2 and dγ = −1
4
( ε1
ε
)
1
2x− 3

2dx for fixed ε1
ε
.

dP

dV dε1
∝ ε

− p−1

2
1

∫

nph,εε
p−1

2 dε
∫

ε1

4γ2
min

ε

ε1

4γ2maxε

x
p−1

2 f(x)dx

∝ ε
− p−1

2
1 . (7.28)

In the above we have assumed that the integration over x is essentially from 0
to 1 (because γmin ≪ γmax) and therefore does not depend on ε1/ε. The power
index of this spectrum is the same as that for the synchratron radiation.

For a thermal photon field,

nph,εdε = Bνdν × 4π

cε
, (7.29)

that is,

nph,ε =
8π

h3c3
ε2

exp( ε
kT
)− 1

. (7.30)

We can see that

dP

dV dε1
∝ (kT )

p+5

2 ε
− p−1

2
1 , (7.31)

that is, the emissivity depends on the photon temperature to the p+5
2

power.
More detailed and more general consideration about scattering of an isotropic
photon field off a population of electrons can be found in Jones (1968).

Notes to some useful Lorentz invariants

We have employed some Lorentz invariants in the above discussion. Here
is a summary:

• A four-volume, i.e., a differential volume element in a four-vector space,
is Lorentz invariant (Shultz 1985, p.157; Weinberg 1972, p.99).

• A phase space element, i.e., d3xd3p, is Lorentz invariant (Rybicki &
Lightman 1979, p.145).
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• The emitted power for the case of front-back symmetric radiation pat-
tern in the rest frame of the radiating charge is invariant (Rybicki &
Lightman 1979, p.139). By ‘front-back symmetric’ we mean for any
direction of emission there is an equal probability of emission in the
opposite direction. The dipole radiation adopted in Thomson scatter-
ing is such a case.

• The phase space density dN
d3xd3p

is also invariant.

• The ratio of differential number density to its corresponding energy,
dn/ε, is invariant. This can be seen by noting that

dn =
dN

d3x
=

dN

d4x
dx0 , (7.32)

and therefore dn transforms like dx0, the time componemt of a dif-
ferential displacement four-vector. Since the differential displacement
four-vector is ‘parallel’ to its momentum four-vector ( dxi

dx0
= pi

p0
), we

have

dx0

p0
=

∑

Λ′
0µdx

′
µ

∑

Λ′
0µp

′
µ

=

∑

Λ′
0µdx

′
µ

∑

Λ′
0µ

dx′

µ

dx′

0
p′0

=
dx′

0

p′0
. (7.33)

Noting that p0 = ε, we then have dn/ε being Lorentz invariant (Blu-
menthal & Gould 1970).

7.3 Comptonization

The scattering between photons and electrons brings energy exchange be-
tween these two species. Very often we are interested in how the photon
distribution is altered by a certain distribution of electrons through multi-
ple scatterings. Such an action of changing the photon distribution is called
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Comptonization. In the following we will discuss the concept of the Comp-
ton optical depth and Comptonization in a thin medium and in a thermal
medium.

The Compton y parameter (the Compton optical depth)

Let’s first discuss how to parameterize the significance of Comptonization
of a medium. Consider repeated scattering of low-energy photons in a finite
medium. One may define a Compton y parameter as the following to describe
how significantly a photon’s energy is changed when it travels through the
medium: y := (average fractional energy change per scattering ∆ε/ε) ×
(average number of scattering in the medium).

For non-relativistic electrons in thermal equilibrium, the average frac-
tional energy transfer per scattering to photons is (Eq.(7.25))

∆εNR

ε
=

4kT

mec2
. (7.34)

This equation describes the fractional energy change of a photon with energy
ε in a thermal electron bath. The ‘average’ embedded is meant to be over the
electron distribution. In Eq.(7.25) the isotropy of photon motion is assumed.
Here it can be achieved by the thermal distribution of electrons. Eq.(7.25)
is good for ε ≪ kT

mc2
, and so is Eq.(7.34).

For ultra-relativistic cases in the Thomson limit (γ ≫ 1, γε ≪ 1), we
have

∆εUR

ε
=

4

3
γ2 , (7.35)

which can be obtained from Eq.(7.23). If the electrons are in thermal equi-
librium, considering dne = f(p)d3p ∝ e−E/kTp2dp ∝ e−E/kTE2dE, we have

〈γ2〉 = 〈E2〉
(mec2)2

= 12

(

kT

mec2

)2

, (7.36)

and

∆εUR

ε
=

(

4kT

mec2

)2

. (7.37)

For the average number of scattering in a medium, let’s consider ℓ∗ =√
Nℓ, where ℓ∗ is the diffusion length, N is the number of scattering and ℓ is
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the mean free path (Eq.(1.55)). For photons to escape from an optically thick
medium, ℓ∗ is of the order of the medium dimension R. So, N = (R/ℓ)2 = τ 2es,
where τes ∼ ρκesR = R/ℓ. For an optically thin medium, noting that e−τes

is the probability of no scattering (survival probability), N can be estimated
as 1 − e−τes ≈ τes, i.e., the probability of having scattering before escaping
from the medium.

Therefore, for a thermal distribution of electrons, the Compton y param-
eter for non-relativistic and ultra-relativistic cases are

yNR =
4kT

mec2
Max(τes, τ

2
es) (7.38)

yUR = (
4kT

mec2
)2Max(τes, τ

2
es) , (7.39)

The y-parameter is the Compton optical depth, which indicates the signifi-
cance level of Comptonization in a medium.

Optically thin media: power-law spectra due to repeated scattering

When the mean amplification of photon energy per scattering is indepen-
dent of the photon energy, i.e.,

ε1 = Aε , (7.40)

where A does not depend on ε, it is possible to result in a power-law emergent
spectrum. Considering that ε1 = ε + ∆ε = ε(1 + 4

3
〈γ2〉) = ε(1 + ( 4kT

mc2
)2) ≈

ε( 4kT
mc2

)2 for an ultra-relativistic case in the Thomson limit, i.e., ε ≪ 1/γ, and
ε1 ∼ ε(1 + 4kT

mc2
) for a non-relativistic case with ε ≪ kT

mc2
, we have A being

independent of ε for both cases. The photon energy after k times scatterings
is expected to be

εk ∼ εiA
k (7.41)

If the medium’s scattering optical depth is small, and the absorption optical
depth is even much smaller, the probability for a photon to have k times
scatterings before escaping from the medium is about τkes. We therefore have

N(εk)dεk = N(εi)dεiτ
k
es . (7.42)
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Noting that we may express τkes in terms of εk/εi as

τkes =
(

εk
εi

)−µ

, (7.43)

where

µ =
− ln τes
lnA

(7.44)

is simply a property of the medium, and dεk = Akdεi = (εk/εi)dεi, we then
have

N(εk) = N(εi)
(

εk
εi

)−1−µ

. (7.45)

We see that a power-law spectrum can be produced by repeated scattering
even when the electron distribution is not a power law. This result is similar
to that in the Fermi mechanism, or shock acceleration. Note that the above is
only valid for εk ≪ kT

mc2
(NR) or εk ≪ 1/γ (UR), and this is a photon number

spectrum. For the photon energy spectrum (energy flux density spectrum),
the power is simply −µ.

Evolution of the photon spectrum in a non-relativistic thermal
medium: the Kompaneets equation

A general discussion of repeated Compton scattering and the resultant
spectra is complicated, when different Compton optical depth, different pho-
ton energy ranges, and other emissions from the media are involved. The
Kompaneets equation is an equation to describe Comptonization in a non-
relativistic thermal electron gas, which we will briefly discuss in the following.

The Kompaneets equation describes the evolution of photon occupation
numbers. The occupation number n, or the phase space distribution function,
is related to the phase space number density as

dN

d3xd3p
=

g

h3
n , (7.46)

where g is the statistical weight. For photons g = 2. The photon occupation
number is related to the specific intensity by

n =
Iνc

2

2hν3
, (7.47)
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where hν is the photon energy. The above equation can be obtained with
hints from the Planck function. In equilibrium, n is simply the Bose-Einstein
distribution with zero chemical potential, and the relation between n and Iν
does not depend on whether it is in equilibrium or not. The assumption
of isotropy is implicitly included, though. Otherwise, the specific intensity
should be better replaced with the mean specific intensity.

The Boltzmann equation for n is, due to scatterings with a population of
electrons,

∂n(ω)

∂t
= c

∫

d3p
∫

dσ

dΩ
dΩ(fe(~p1)n(ω1)(1 + n(ω))

−fe(~p)n(ω)(1 + n(ω1))) (7.48)

where fe(~p) and fe(~p1) are electrons’ phase space number density, ω1 depends
on ~p or ~p1 to accomplish the scattering, and n(ω) = n(ν). The first term
at the right hand side is for the increase of n(ω) due to scattering between
electrons of momentum ~p1 and photons of frequency ω1. The second term
describes the decrease. Stimulated processes are included via n in (1 + n).
This equation is in general difficult and complicated to solve. If the elec-
trons are non-relativistic, the fractional energy change per scattering is small.
The Boltzmann equation can be expanded to the second order in this small
quantity. This approximation leads to the Fokker-Planck equation. The
Fokker-Planck equation for photons scattering off a non-relativistic, thermal
distribution of electrons is called the Kompaneets equation. We define here
the photon energy change with a dimensionless quantity ∆,

∆ =
h̄(ω1 − ω)

kT
. (7.49)

For the case of ∆ ≪ 1, we can expand n to be

n(ω1) = n(ω) + (ω1 − ω)
∂n

∂ω
+

1

2
(ω1 − ω)2

∂2n

∂2ω
+ ...... (7.50)

Then, the Kompaneets equation is

1

c

∂n

∂t

= (n′ + n(1 + n))
∫ ∫

d3p
dσ

dΩ
dΩfe∆

+(
1

2
n′′ + n′(1 + n) +

1

2
n(1 + n))

∫ ∫

d3p
dσ

dΩ
dΩfe∆

2 , (7.51)
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where n′ = ∂n/∂x and x = h̄ω
kT

. This can be turned into the following form
(Rybicki & Lightman 1979, p.214-215):

∂n

∂tc
=

(

kT

mec2

)

1

x2

∂

∂x
(x4(n′ + n + n2)) , (7.52)

with tc = (neσTc)t is the time in units of mean time between scatterings.
Eq.(7.52) can be solved numerically in general. If the system is very

optically thick, the photon spectrum reaches equilibrium after a sufficient
number of scatterings. We note that the Bose-Einstein distribution (n =
(exp(x + α) − 1)−1) makes n′ + n + n2 = 0. On the other hand, if before
reaching equilibrium, photons already escape from the system, one should
include input and the escape of photons in the Kompaneets equation, that
is,

∂n

∂tc
=

(

kT

mc2

)

1

x2

∂

∂x
(x4(n′ + n+ n2)) +Q(x)− n

Max(τes, τ 2es)
, (7.53)

where Q(x) is the source term and the escape probability per scattering is
taken to be the reciprocal of the average number of scattering in the medium.
Consider a steady-state solution and that Q is only non-zero for a very small
x which is below the frequency range that we are concerned with. We then
have

yNR
∂

∂x
(x4(n′ + n)) = 4nx2 , (7.54)

where the n2 term, which is related to stimulated processes, is dropped be-
cause n is usually a very small number.

For x ≫ 1, i.e., in the high frequency regime, we may further drop nx2,
when compared with terms with x4 in the partial derivative, and have n′+n ≈
0. It gives the solution that

n ∝ e−x , (7.55)

which is the Wien’s law: the intensity Iν is related to the occupation number
n(ν) as

Iν =
2hν3

c2
n(ν) =

2hν3

c2
e−

hν
kT . (7.56)

78



For x ≪ 1, i.e., in the low frequency regime, n can usually be neglected,
compared with n′ (think of the Bose-Einstein distribution). We then have

yNR
∂

∂x
(x4n′) = 4nx2 , (7.57)

which suggests a solution like

n ∝ xm . (7.58)

It is straightforward to find that

m = −3

2
±
√

9

4
+

4

yNR
. (7.59)

The intensity is then

Iν ∝ ν3+m . (7.60)

The choice of the plus and minus signs in determining m is not trivial. For
yNR ≪ 1, the square-root term dominates. The minus sign is appropriate to
avoid a positive m so that in such an optically thin case there is a simple
decreasing power law to join the exponential cut off at high frequency. For
yNR ∼ 1 or larger, a linear combination of two power laws with different
power indices should be considered – but this is only because we are taking
approximated expressions. In general, when the media are more and more
opaque, a thermal bump around x ∼ 1 will appear in Iν . One example is
shown in Fig. 7.6, in which a more general x is considered.
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Figure 7.6: The Comptonization of low energy photons in a spherical plasma
with electrons at kT = 25 keV (Pozdnyakov et al. 1983). Solid lines are
analytic solutions, which describe the Monte Carlo simulation results (his-
togram) very well, except for the case of τ = 3 and τ = 4, for which a better
fit can be obtained by assigning the spectral index α at the low energy end
of the simulation to the analytic solution.
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Chapter 8

Some Plasma Effects

In this chapter we discuss some phenomena related to the existence of a
plasma. For simplicity, the plasma considered here is a system consisting
of ions and electrons. Because ions are much more massive than electrons,
they are considered to be at rest all the time, immersed in a sea of mobile
electrons.

8.1 Dispersion measure

The first to discuss is the dispersion measure, which is used in estimating
distance of radio pulsars. We will introduce the conductivity, dielectric con-
stant, and plasma frequency of a plasma in the following and then discuss
the dispersion measure.

The conductivity

Taking the variation of all quantities as exp(i(~k · ~r − ωt)), Maxwell’s
equations turn to be

i~k · ~E = 4πρ

i~k × ~E = i
ω

c
~B

i~k · ~B = 0

i~k × ~B =
4π

c
~j − i

ω

c
~E (8.1)
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Consider electrons’ equation of motion in response to the travelling electro-

magnetic waves, m~̇v = −e ~E and then ~v = e ~E
iωm

. The electric current density
is then

~j = −nee~v

=
inee

2

ωm
~E

= σ ~E (8.2)

where ne is the electron number density and the conductivity is

σ ≡ inee
2

ωm
. (8.3)

The dielectric constant

From the continuity equation, −iωρ+ i~k ·~j = 0, we have

ρ =
~k ·~j
ω

=
σ

ω
~k · ~E . (8.4)

With the defintion of the dielectric constant

ǫ ≡ 1− 4πσ

iω
, (8.5)

Maxwell’s equations become

i~k · ǫ ~E = 0

i~k × ~E = i
ω

c
~B

i~k · ~B = 0

i~k × ~B = −i
ω

c
ǫ ~E , (8.6)

which are ‘source free’ (ρ and j are taken care of by ǫ). From the above
equations (Faraday’s law and Ampere’s law) we also have the dispersion

relation, ω(~k), to be

ǫω2 = c2k2 . (8.7)
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The plasma frequency

The dielectric constant, from Eq.(8.5), can be written as

ǫ = 1− ω2
p

ω2
, (8.8)

where ωp is the plasma frequency and

ω2
p =

4πnee
2

m
. (8.9)

Then the dispersion relation, ω(~k), becomes

ω2 = ω2
p + k2c2 . (8.10)

This is similar to the energy-momentum relation in Special Relativity. For
ω < ωp, the wave number k is imaginary and no waves can propagate. For
reference, the value of the plasma frequency is

ωp = 5.63× 104
√
ne s

−1 , (8.11)

or,

νp = 0.9× 104
√
ne Hz , (8.12)

where ne is in Gaussian units.

The dispersion measure

The phase velocity of a photon is

vφ :=
ω

k
=:

c

nr
, (8.13)

where the refraction index nr is, from the dispersion relation, Eq.(8.7) or
Eq.(8.10),

nr =
√
ǫ =

√

1− ω2
p

ω2
< 1 . (8.14)

Therefore we have vφ > c. The group velocity is

vg :=
∂ω

∂k
= c

√

1− ω2
p

ω2
, (8.15)
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and therefore vg < c. Since the group velocity is a function of frequency, a
pulse will be dispersed along the way of its propagation.

The time interval, T , for a photon to travel a distance d in a plasma is

T =
∫ d

0

ds

vg
. (8.16)

For cases of ω ≫ ωp, one can have vg ≈ c(1 − 1
2

ω2
p

ω2 ), and
1
vg

≈ 1
c
(1 + 1

2

ω2
p

ω2 ).

Then,

T ≈ d

c
+

1

2cω2

∫ d

0
ω2
pds . (8.17)

For the application to radio pulsars, usually one can measure the arrival time
difference for different frequencies, that is,

dT

dω
= − 4πe2

cmω3
D , (8.18)

where

D =
∫ d

0
neds (8.19)

is the dispersion measure and can be measured. Given a model of ne, the
distance to the pulsar can be estimated.

8.2 Faraday rotation

The group velocity of electromagnetic waves in a plasma is frequency depen-
dent. In a magnetized plasma, it is also polarization dependent. This is what
we will discuss in this section.

Group velocity for different polarizations

If the plasma is not isotropic, e.g., there exists an external magnetic
field, the dielectric constant is no longer a scalar. Furthermore, only waves
with certain polarization (eigen modes) have the simple exponential form
employed in the last section. Now let’s consider a circularly polarized wave
propagating along the direction of a constant external magnetic field, whose
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strength is much stronger than the wave field. Such a wave is an eigen mode
in this medium. The equation of motion for electrons in the plasma is

m~̇v = −e ~E − e

c
~v × ~B , (8.20)

where

~E(t) = E0 exp(−iωt)(ê1 ∓ iê2) (8.21)

is the wave field and

~B = B0ê3 (8.22)

is the external field. Here the ‘−’ sign corresponds to the right-handed cir-
cular polarization. From the above equations and considering ~v = (vxê1 +
vy ê2) exp(−iwt), one can find the velocity is related to the wave electric field
as

~v(t) =
−ie

m(ω ± ω0)
~E(t) . (8.23)

Comparison of this equation with previous ones in the last section (Eq.(8.2
and Eq.(8.5); the ω in σ should be replaced with ω ± ω0) leads to

ǫR,L = 1− ω2
p

ω(ω ± ω0)
(8.24)

where R,L corresponds to the + and − signs in the denominator of the
2nd term at the right hand side respectively. In a magnetized plasma, the
dispersion relation is in general more complicated than Eq.(8.7), but it is still
in the same form as Eq.(8.7) for circularly polarized waves propagating in
the direction of the magnetic field. We can see that these waves travel with
different velocities because of the different dielectric constants.

The rotation measure

A linearly polarized wave is a coherent superposition of a right-hand and
a left-hand circularly polarized wave. Its polarization plane will rotate along
its propagation because of the different velocity of the two component waves.
This effect is called Faraday rotation.
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The phase angle that the electric-field vector of a circularly polarized
wave will sweep through over a distance d is

φR,L =
∫ d

0
kR,Lds , (8.25)

where

kR,L =
ω

c

√
ǫR,L

≈ ω

c

(

1− ω2
p

2ω2
(1∓ ω0

ω
)

)

, (8.26)

where we have assumed that ω ≫ ωp and ω ≫ ω0. The dispersion rela-
tion, Eq.(8.7), is also used to link k and ǫ. The polarization plane of the
linearly polarized wave will be rotated by an angle ∆θ equal to one half of
the difference between φR and φL. Therefore,

∆θ =
1

2

∫ d

0
(kR − kL)ds

=
1

2

∫ d

0

ω0

c

ω2
p

ω2
ds

=
2πe3

m2c2ω2

∫ d

0
neB‖ds (8.27)

The B‖ is the component along the line of sight. Although we only consider

here a simplified case that ~B is itself along the line of sight, it can be shown
that this result is in general correct. One may measure the polarization angle
at different frequencies, i.e., d∆θ

dω
, to infer the value of the integral

∫

neB‖ds,
which is called the rotation measure and can give some information about
the field strength if ne and d are provided.

8.3 Cherenkov radiation and Razin effect

The radiation emitted by charged particles is subject to all the plasma prop-
agation effects. Radiation of frequency lower than the plasma frequency
cannot propagate. A pulse will disperse because the group velocity is fre-
quency dependent. The polarization angle of a linearly polarized light will
rotate due to Faraday rotation, and the polarization of synchrotron radiation
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will be degraded because Faraday rotation is frequency dependent. In the
following we will describe two more effects, which involve induced motions
and emissions of the particles comprising the medium. Our description here
is only a simplified, qualitative one.

When charged particles move at a speed larger than the phase speed of
light in the medium, i.e., v > c/nr , they emit Cherenkov radiation. Here
we should consider only the case of nr > 1 and we note that nr is in general
frequency dependent. Discussion of the Cherenkov radiation can be found in
Jackson (1975, page 639) and Longair (2011, page 264). Roughly speaking,
wavefronts of the electromagnetic field variation caused by the moving charge
are coherently summed in the direction of cos θ = c

nrv
, where θ is the angle

between the charge motion and the radiation. The spectrum of Cherenkov
radiation is, in term of specific intensity,

Iω(ω) ∝ ω(1− c2

n2
rv

2
) . (8.28)

It is called the Frank-Tamm equation, after two Russian physicists, Ilya
Frank and Igor Tamm, who developed the theory of the Cherenkov radiation
in 1937. The refractive index nr is usually a complicated function of ω. The
example of water as the medium is shown in Figure 8.1. For cosmic-ray or

Figure 8.1: The refraction index of water. The abscissa labeled at the top
is the photon frequency. This figure is taken from Jackson (1975, page 291,
Figure 7.9).

gamma-ray induced pair cascade in the upper atmosphere, very often the
blue light dominates in their Cherenkov radiation (think of the frequency
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dependence in ω and nr in Eq.(8.28)). When there is charge asymmetry in
the secondary charged particles, coherent Cherenkov radiation from a bunch
of charges can be emitted at longer wavelengths. This is the Askaryan
effect, usually observed in microwave bands (Saltzberg et al. 2001).

Now let’s discuss the Razin effect. If nr < 1, as it is in a cold plasma,
the beaming effect will be suppressed at lower frequencies. This can be seen
by replacing the speed of light in vacuum with the phase speed of light in
a medium. In our earlier discussion, we have the beaming angle θb given by
θb ∼ 1/γ =

√
1− β2 in a vacuum. Now, in a medium, we should have

θb ∼
√

1− n2
rβ

2 . (8.29)

If nr is very close to unity (ω ≫ ωp), θb is determined by β. On the other
hand, if nr is substantially smaller than unity (ω is only a little bit larger
than ωp), we will have

θb ∼
√

1− n2
r =

ωp

ω
. (8.30)

For frequencies of

ω < γωp , (8.31)

we have θb > 1/γ and the medium effect is important. In this frequency
regime, synchrotron (and curvature) radiation will be cut off because of
beaming suppression. This is called the Razin effect. By setting ωc ≈
γ2ω0 < γωp, we see that the synchrotron radiation of charges with γ < ωp/ω0

will be largely suppressed.
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