SCI Journals(Update 2020.6.3):

[1]   R. S. Tung, C. H. Chang, D. C. Chen, and J. M. Nester, "Asymptotic Anti-De Sitter Conditions for Poincare Gauge Theory", Prog. Theor. Phys. 88, 291(1992).

[2]       Y. C. Yu, E. K. Lin, C. W. Wang, P. J. Tsai, and C. H. Chang, "L X-Ray-Production in La, Nd, Er and Lu by 1~5 MeV Protons", J. Phys. B: 27, 3967 (1994).

[3]       E. K. Lin, C. W. Wang, Y. C. Yu, W. C. Cheng, C. H. Chang, Y. C. Yang, and C. Y. Chang, "Application of PIXE for Elemental Analysis of Ancient Chinese Artifacts", Nucl. Instrum. Methods 99, 394 (1995).

[4]       H. Y. Yao, E. K. Lin, C. W. Wang, Y. C. Yu, C. H. Chang, Y. C. Yang, and C. Y. Chang, "A PIXE study of Verification of Carnation in-Vitro Culture", Nucl. Instrum. Methods 109, 312 (1996).

[5]       K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett S. H. Chen, and T. T. Yang, “An Ultra High Gain Gyrotron Traveling Wave Amplifier”, Phys. Rev. Lett. 81, 4760 (1998).

[6]       T. H. Chnag, L. R. Barrnett, K. R. Chu, F. Taai, and C. L. Hsu, “A Dual-Function Circular Polarization Converter for Microwave/Plasma Processing Systems”, Rev. Sci. Instru. 70, 1530 (Feb.1999).

[7]       K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and Experiment of Ultra High Gain Gyrotron Traveling-Wave Amplifier, IEEE Trans. Plasma Sci. 27, pp. 391-404, (1999). Invited paper.

[8]       K. R. Chu, T. H. Chang, H. Y. Chen, C. L. Hung, L. R. Barnett, S. H. Chen, and T. T. Yang “Recent Advances in Gyrotron Traveling Wave Amplifier”, Recent Advances and Cross-Century Outlooks in Physics, edited by Pisin Chen and Cheuk-Yin Wong, world Scientific. pp.369-378, (1999).

[9]       S. H. Chen, K. R. Chu, and T. H. Chang, “Saturated Behavior of the Gyrotron Backward-Wave Oscillator”, Phys. Rev. Lett.85, 2633, (2000).

[10]   Y. S. Yeh, M. H. Tsao, H. Y. Chen, and T. H. Chang, "Improved computer program for magnetron injection gun design", Int. J. Infrared and Millimeter Waves, 21, no. 9, pp. 1397-1415, (2000).

[11]   K. R. Chu, T. H. Chang, H. Y. Chen, C. L. Hung, L. R. Barnett, S. H. Chen, and T. T. Yang “Physics and Technology Issues of the Gyrotron Traveling Wave Amplifier”, Strong Microwaves in Plasmas, edited by A.G. Litvak, Nizhny Novgorod. pp. 718-727, (2000).

[12]   Y. S. Yeh, T. H. Chang, and C. T. Fan, "Beam characteristics of mechanically tunable magnetron injection guns", Int. J. Infrared and Millimeter Waves, 22, no. 7, pp. 983-997, (2001).

[13]   T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, “Characterization of Stationary and Nonstationary Behavior of Gyrotron Oscillators”, Phys. Rev. Lett. 87, 064802, (2001).

[14]   K. R. Chu, T. H. Chang, L. R. Barnett, and S. H. Chen, “Theory and Experiment of Ultra High Gain Gyrotron Traveling-Wave Amplifier”, AIP proceeding RF2001, (2001)

[15]   S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan, and K. R. Chu, “Linear and Time-Dependent Behavior of the Gyrotron Backward-Wave Oscillator”, Phys. Rev. Lett.89, 268303, (2002).

[16]   D. B. McDermott, H. H. Song, Y. Hirata, A. T. Lin, L. R. Barnett, T. H. Chang, H. L. Hsu, P. S. Marandos, J. S. Lee, K. R. Chu, and N. C. Luhmann, Jr., “Design of a W-Band TE01 Mode Gyrotron Traveling Wave Amplifier with High Power and Broadband Capabilities”, IEEE Trans. Plasma Sci., 30, 894 (2002).

[17]   T. H. Chang, K. F. Pao, S. H. Chen, 7and K. R. Chu, “Self-consistent effects on the starting current of the gyrotron oscillators”, Int. J. Infrared and Millimeter Waves 24, no. 9, pp. 1415-1420, (2003).

[18]   H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R.Chu, and N. C. Luhmann, Jr. ”Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier”, Phys. Plasmas, 11, pp. 2935-2941 (2004).

[19]   Y. S. Yeh, T. H. Chang, and T. S. Wu, “Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics”, Phys. Plasmas 11, pp. 4547-4553, (2004).

[20]   W. C. Tsai, T. H. Chang, N.C. Chen, K.R. Chu, H.H. Song, and N.C. Luhmann, Jr., “Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier”, Phys. Rev. E, 70, 056402 (2004).

[21]   T. H. Chang* and S. H. Chen, “Stepwise frequency tuning of a gyrotron backward-wave oscillator ing-wave amplifier”, Phys. Plasmas, 12, 013104, (2005).

[22]   T. H. Chang*, “A field probing approach and its application to a power distribution network”, Int. J. Infrared and Millimeter Waves, 26, No.3, pp.409-419 (2005).

[23]   T. H. Chang*, “Minimizing the Switching Noise in a Power Distribution Network using External Coupled Resistive Termination”, IEEE Trans. Adv. Packag., 28, No4, 754 (2005).

[24]   T. H. Chang*, C. F. Yu, and C. T. Fan, “Novel polarization controllable TE21 mode converter”, Rev. Sci. Instrum., 76, 074703 (2005).

[25]   C. F. Yu and T. H. Chang*, ”High-Performance Circular TE01-Mode Converter”, IEEE Trans. Microwave Theory Tech., 53, No.12, 3794 (2005). (SCI, 93-2112-M-007-019)

[26]   K. F. Pao, T. H. Chang, C. T. Fan, S. H. Chen, C. F. Yu, and K. R. Chu, “Dynamics of Mode Competition in the Gyrotron Backward-Wave Oscillator”, Phys. Rev. Lett., 95, 185101 (2005).

[27]   T. H. Chang* and N. C. Chen, “Transition of absolute instability from global to local modes in a gyrotron traveling-wave amplifier,” Phys. Rev. E 74, 016402 (2006).

[28]   K. F. Pao, T. H. Chang, S. H. Chen, and K. R. Chu, “Rise and fall behavior of the gyrotron backwatd-wave oscillator”, Phys. Rev. E 74, 046405 (2006).

[29]   Y. S. Yeh, T. H. Chang, C. L. Hung, Y. C. You, L. K. Chen, and M. C. Hsiao, ” Stability analysis of a gyrotron backward-wave oscillator with an external injection signal”, IEEE Trans. Plasma Sci. 34, No. 4, 1523 (2006).

[30]   A. Bhaskar, T. H. Chang*, H. Y. Chang, and S. Y. Cheng, “Low-temperature crystallization of sol-gel derived PZT thin films by 2.45GHz microwave energy,” Thin Solid Films, 515, 2891 (2007).

[31]   T. H. Chang*, C. T. Fan, K. F. Pao, S. H. Chen, and K. R. Chu, “Stability and Tunability of the Gyrotron Backward-Wave Oscillator”, Appl. Phys. Lett. 90, 191501 (2007).

[32]   A. Bhaskar, H. Y. Chang, T. H. Chang*, and S. Y. Cheng, “Effect of microwave annealing temperatures on lead zirconate titanate thin films,” Nanotechnology, 18, 395704 (2007).

[33]   C. T. Fan, T. H. Chang*, K. F. Pao, S. H. Chen, and K. R. Chu, “Stable, high efficient gyrotron backward-wave oscillator”, Phys. Plasmas, 14, 093102 (2007).

[34]   K. F. Pao, C. T. Fan, T. H. Chang, C. C. Chiu, and K. R. Chu, “Selective suppression of high order axial modes of the gyrotron backward-wave oscillator”, Phys. Plasmas, 14, 093301 (2007).

[35]   N. C. Chen, C. F. Yu, and T. H. Chang*, “A TE21 second harmonic gyrotron backward-wave oscillator with slotted structure”, Phys. Plasmas, 14, 123105 (2007).

[36]   T. H. Chang*, C. F. Yu, C. L. Hung, Y. S. Yeh, M. C. Msiao, and Y. Y. Shin, “W-band TE01 gyrotron backward-wave oscillator with distributed loss”, Phys. Plasmas 15, 073105 (2008).

[37]   T. H. Chang*, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low terahertz region”, Appl. Phys. Lett. 93, 111503 (2008). 第一作者+通訊作者

[38]   A. Bhaskar, T. H. Chang, H. Y. Chang, and S. Y. Cheng, “Pb(Zr0.53Ti0.47)O3 thin films with different thickness obtained at low-temperature by microwave irradiation”, Applied Surface Science 255, 3795 (2009).

[39]   T. H. Chang*, T. Idehara, I. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using backward-wave components”, J. Appl. Phys. 105, 063304 (2009). 第一作者+通訊作者

[40]   S. C. Fong, C. Y. Wang, T. H. Chang*,and T. S. Chin, Crystallization of amorphous Si film with SiC susceptor by microwave annealing”, Appl. Phys. Lett. 94, 102104 (2009).通訊作者

[41]   T. H. Chang*, and B. R. Yu, “High-Power Millimeter-Wave Rotary Joint”, Rev. Sci. Instrum. 80, 034701 (2009). 第一作者+通訊作者

[42]   N. C. Chen, C. F. Yu, C. P. Yuan, and T. H. Chang*, “A mode-selective circuit for TE01 Gyrotron Backward-wave Oscillator with wide-tuning range”, Appl. Phys. Lett. 94, 101501 (2009).通訊作者

[43]   C. P. Yuan, T. H. Chang*, N. C. Chen, and Y. S. Yeh, “Magnetron injection gun for a broadband gyrotron backward-wave oscillator,” Phys. Plasmas 16, 073109 (2009).通訊作者

[44]   H. Y. Yao and T. H. Chang*, “Effect of high-order modes on tunneling characteristic”, Progress In Electromagnetics Research, PIER, 101, 291-306, 2010. 通訊作者

[45]   T. H. Chang*, B. Y. Shew, C. Y. Wu, and N. C. Chen, "X-ray microfabrication and measurement of a terahertz mode converter", Rev. Sci. Instrum. 81, 054701 (2010). 第一作者+通訊作者

[46]   N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara and I. Ogawa, “Micro-fabrication and measurement of a terahertz mode converter", Rev. Sci. Instrum. 81, 054701 (2010).通訊作者

[47]   T. H. Chang*, C. H. Li, C. N. Wu, and C. F. Yu, "Generating pure circular TEmn modes using Y-type power dividers", IEEE Trans. Microwave Theory Tech. 58, 1543 (2010). 第一作者+通訊作者

[48]   Y. S. Yeh, T. H. Chang, C. T. Fan, C. L. Hung, J. N. Jhou, J. M. Huang, J. L. Shiao, Z. Q. Wu, and C. C. Chiu, "Nonlinear oscillation behavior of a driven gyrotron backward-wave oscillator", Phys. Plasmas 17, 113112 (2010).

[49]   S. C. Fong, H. W. Chao, T. H. Chang*, H. J. Leu, I. S. Tsai, S. Y. Cheng, C. Y. Wang, T. S. Chin, “Microwave-crystallization of amorphous silicon film using carbon-overcoat as susceptor”, Thin Solid Films, Vol. 519, 4196-4200. (2011, Feb).通訊作者

[50]   C. P. Yuan, S. Y. Lin, T. H. Chang*, and B. Y. Shew, “Millimeter-wave Bragg diffraction of micro-fabricated crystal structures”, American Journal of Physics, Vol. 79, 619-623. (2011, Jun).( Selected as the cover of this issue).通訊作者

[51]   T. H. Chang*, H. W. Chao, F. H. Syu, W. Y. Chiang, S. C. Fong, and T. S. Chin, “Efficient heating with a controlled microwave field”, Review of Scientific Instruments. (SCI). (2011, Dec). 第一作者+通訊作者

[52]   C. L. Hung, T. H. Chang, and Y. S. Yeh, “Effects of tapering structures on the characteristics of a coaxial-waveguide gyrotron backward-wave oscillator”, Physics of Plasmas, 18, 103113. (2011, Oct).

[53]   C. P. Yuan and T. H. Chang*, “Modal analysis of metal-stub photonic band gap structures in a parallel-plate waveguide”, Progress in Electromagnetics research, 119, pp.345-361. (2011, Aug).通訊作者

[54]   C. H. Du, T. H. Chang*, P. K. Liu, C. P. Yuan, S. J. Yu, G. F. Liu, V. L. Bratman, M. Y. Glyavin Development of a Magnetic Cusp Gun for Terahertz Harmonic Gyro-Devices . IEEE Trans. on Electron Devices, 59, 3635-3640. (2012, Dec).通訊作者

[55]   C. L. Hung, Y. H. Lian, Y. S. Yeh, T. H. Chang, and N. H. Cheng Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses. Physics of Plasmas 19, 113111. (2012, Nov).

[56]   H. Y. Yao, N. C. Chen, T. H. Chang* and H. Winful "Frequency dependent cavity lifetime and apparent superluminality in Fabry-Perot-like interferometers". Phys. Rev. A, 86, 053832. (2012, Nov).通訊作者

[57]   Y. S. Yeh, C. L. Hung, T. H. Chang, C. H. Chen, S. J. Yang, C. H. Lai, T. Y. Lin, Y. C. Lo, and J. W. Hong, “Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band”, Physics of Plasmas, 19, 093103. (2012, Sep).

[58]   C. C. Huang, T. H. Chang*, N. C. Chen, H. W. Chao, C. C. Chen, and S. F. Chou, “Generating electron cyclotron resonance plasma using distributed scheme”, Applied Physics Letters, 101, 062414. (2012, Aug).通訊作者

[59]   A. Bhaskar, H. Y. Chang, T. H. Chang, and S. Y. Cheng, “Microwave annealing of YAG: Ce nanophosphors”, Materials Letters, 78, pp.124-126. (2012, Mar).

[60]   N. C. Chen, T. H. Chang*, and C. Y. Yang “Broadband conversion of TE01 mode for the coaxial gyrotron at low terahertz”, Physics of Plasmas, 19, 032117. (2012, Mar).通訊作者

[61]   T. H. Chang*, N. C. Chen, H. W. Chao, J. C. Lin, C. C. Huang and C. C. Chen, “Generating large-area uniform microwave field for plasma excitation”, Physics of Plasmas, 19, 033302. (2012, Mar). 第一作者+通訊作者

[62]   H. Y. Yao and T. H. Chang* “Experimental and theoretical studies of a broadband superluminality in Fabry-Perot interferometer”, Progress In Electromagnetics Research, 122, pp.1-13. (2012, Jan). 通訊作者

[63]   H. W. Chao and T. H. Chang*, “A modified calibration method for complex permittivity measurement”, Rev. Sci. Instrum., 84, 084704. (2013, Aug). 通訊作者

[64]   C. C. Huang, S. F. Chou, T. H. Chang*, H. W. Chao, and C. C. Chen, “Effect of magnetic field profile on the uniformity of a distributed electron cyclotron resonance plasma”, Physics of Plasmas, 20, 073504. (2013, Jul). 通訊作者

[65]   C. H. Du, T. H. Chang*, P. K. Liu, Y. C. Huang, P. X. Jiang, S. X. Xu, Z. H. Geng, B. L. Hao, L. Xiao, G. F. Liu, Z. D. Li, and S. H. Shi, “Design of a W-band Gyro-TWT Amplifier With a Lossy Ceramic-Loaded Circuit”, IEEE Trans. on Electron Devices. 60 (7), 2388 (2013, Jul). 通訊作者

[66]   Chao-Hai Du, Xiang-Bo Qi, Pu-Kun Liu, Tsun-Hsu Chang, Shou-Xi Xu, Zhi-Hui Geng, Bao-Liang Hao, Liu Xiao, Gao-Feng Liu, Zheng-Di Li, Shao-Hui Shi, and Hu Wang, "Theory and Experiment of a W-Band Tunable Gyrotron Oscillator," IEEE Trans. on Electron Devices, 61(6), 1781 (2014).

[67]   T. H. Chang*, H. W. Chao, Y. R. Chen, S. C. Fong, S. C. Chang, and T. S. Chin, “Double-layer particlespout in strong and nonuniform microwave fields”, Japanese Journal of Applied Physics, 53, 116203. (2014, Oct). 第一作者+通訊作者

[68]   C. P. Yuan, C. H. Fang, and T. H. Chang*, “Effects of Form Factor and Multiple Scattering for Metal-Stub Photonic Diffraction at W-band”, Journal of Infrared, Millimeter, and terahertz Waves. 35(9), pp. 790–797 (2014, Sep.). 通訊作者

[69]   Y. S. Yeh, C. L. Hung, T. H. Chang, Y. W. Guo, B. H. Kao, C. H. Chen, and Z. W. Wang, “Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band”, Physics of Plasmas, 22, 123115. (2015, Dec).

[70]   H. Y. Yao, J. Y. Jiang, Y. S. Cheng, Z. Y. Chen, T. H. Her, and T. H. Chang*, “Modal analysis and efficient coupling of TE01 mode in small-core THz Bragg fibers”, Optics Express, 23(21), 27266. (2015, Oct). 通訊作者

[71]   C. H. Du, X. B. Qi, B. L. Hao, T. H. Chang*, and P. K. Liu, “Conformal Cross-flow Axis-encircling Electron Beam for Driving THz Harmonic Gyrotron”, IEEE Electron Device Letters, 36(9) 960. (2015, Sep). 通訊作者

[72]   S. C. Fong, H. W. Chao, T. S. Chin, and T. H. Chang*, “Microwave Crystallization of Silicon Film Using Graphite Susceptor”, Chinese Journal of Physics, 53(2), 040902. (2015, Apr). 通訊作者

[73]   C. H. Du, H. Lee, X. B. Qi, P. K. Liu, and T. H. Chang*. Theoretical Study of a 4th Harmonic 400 GHz Gyrotron Backward-Wave Oscillator. IEEE Trans. on Electron Devices, 62(1), pp. 207-212 (2015, Jan). 通訊作者

[74]   Hsien-Wen Chao, Wei-Syuan Wong, and Tsun-Hsu Chang*, “Characterizing the complex permittivity of high-κ dielectrics using enhanced field method”, Review of Scientific Instruments 86, 114701 (2015). 通訊作者

[75]   Tsun-Hsu Chang* Gyro-magnetically induced transparency for ferrites. American Journal of Physics, 84 (4), 279. (2016, Jan). (Best Physics education journal) 第一作者+通訊作者

[76]   Hsin-Yu Yao, N. C. Chen, Tsun-Hsu Chang*, Herbert G. Winful, “Tunable Negative Group Delay in a Birefringent Fabry–Pérot-Like Cavity With High Fractional Advancement Induced by Cross-Interference Effect”, IEEE Transactions on Microwave Theory and Techniques, 64(10), pp. 3121-3130 (2016). 通訊作者

[77]   V. L. Bratman,A. V. Savilov, and T. H. Chang, “Possibilities for continuous frequency tuning in terahertz gyrotrons with nontunable electrodynamics system”, Radiophysics and Quantum Electronics, 58(9), pp.660-672, February, (2016).

[78]   C. L. Hung, Y. S. Yeh, T. H. Chang, R. S. Fang “A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses”, J Infrared Milli Terahz Waves, 38(1), pp. 1–11, January (2017).

[79]   T. H. Chang*, W. C. Huang, H. Y. Yao, C. L. Hung, W. C. Chen, and B. Y. Su, “Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser”, Physics of Plasmas, 24, 023302 (2017). 第一作者+通訊作者

[80]   H. W. Chao, S. Y. Wu, and T. H. Chang*, “Bandwidth broadening for stripline circulator”, Rev. Sci. Instrum. 88, 024706 (2017). 通訊作者

[81]   Tsun-Hsu Chang*, Cheng-Hung Tsai, Wei-Syuan Wong, Yen-Ren Chen, and Hsien-Wen Chao, “Permeability measurement and control for epoxy composites”, Applied Physics Letters, 111, 094102 (2017). 第一作者+通訊作者

[82]   Ahmad Alsaad, Chris M. Marin, Nabil Alaqtash, Hsien-Wen Chao, Tsun-Hsu Chang,Chin Li Cheung, A. Ahmad, I.A. Qattan, Renat F. Sabirianov, “Effect of bromine deficiency on the lattice dynamics and dielectric properties of alpha-phase diisopropylammonium bromide molecular crystals”, Journal of Physics and Chemistry of Solids, 113, 82–85 (2017).

[83]   Y. S. Yeh, C. L. Hung, T. H. Chang, C. Y. Zheng, W. J. Kao, P. Y. Chiang, and Y. C. Chen, “A study of a terahertz gyrotron traveling-wave amplifier”, Physics of Plasmas, 24, 103126 (2017).

[84]   Tsun-Hsu Chang*, Hsin-Yu Yao, Bo-Yuan Su, Wei-Chen Huang, and Bo-Yuan Wei, “Nonlinear oscillations of TM-mode gyrotrons”, Physics of Plasmas, 24, 122109 (2017). 第一作者+通訊作者

[85]   A. Alsaad, C. M. Marin, N. Alaqtash, H. W. Chao, T. H. Chang, C. L. Cheung, A. Ahmad, I. A. Qattan, R. F. Sabirianov. Crystallographic, vibrational modes and optical properties data of α-DIPAB crystal. Data in Brief, 16, 667-684. (2018).

[86]   H. W. Chao and T. H. Chang*, Wide-range permittivity measurement with a parametric-dependent cavity, IEEE Transactions on Microwave Theory and Techniques, 66(10), pp. 4641-4648 (2018). 通訊作者

[87]   Hsien-Wen Chao and Tsun-Hsu Chang*, Characterization of the lossy dielectric materials using contour mapping, Rev. Sci. Instrum., 89, 104705 (2018), 通訊作者

[88]   Tsun-Hsu Chang* and Kun-Jie Xu, Gain and bandwidth of the TM-mode gyrotron amplifiers, Physics of Plasmas, 25, 112109 (2018) 第一作者+通訊作者

[89]   Hsin-Yu Yao, Zih-Yu Chen, and Tsun-Hsu Chang*, A design of broadband multilayer antireflection coating in THz region, Progress In Electromagnetics Research C, 88, 117-131 (2018), 通訊作者

[90]   Hsin-Yu Yao, Wei-Chen Chang, Li-Wen Chang, and Tsun-Hsu Chang*, Theoretical and Experimental Investigation of Ferrite-Loaded Waveguide for Ferrimagnetism Characterization, Progress In Electromagnetics Research C, 90, 195-208 (2019), 通訊作者

[91]   Cheng-Hung Tsai, Tsun-Hsu Chang*, Yuusuke Yamaguchi, and Toshitaka Idehara, “Nonadiabatic Effects on Beam-Quality Parameters for Frequency-Tunable Gyrotrons”, IEEE Trans. on Electron Devices, 67(1), 341-346 (2020). 通訊作者

[92]   Hsin-Yu Yao, Chih-Chieh Chen, and Tsun-Hsu Chang*, “Starting behaviors of the TM-mode gyrotrons”, Physics of Plasmas, 27, 022113 (2020). 通訊作者

[93]   Shih-Chieh Su, Hsin-Yu Yao, Tsun-Hsu Chang*. Characterization of ferrites using a fully loaded waveguide system. Journal of Magnetism and Magnetic Materials, 505, 166712 (2020). 通訊作者

[94] Shih-Chieh Su and Tsun-Hsu Chang*, “Manipulating the Permittivities and Permeabilities of Epoxy/Silver Nanocomposites Over a Wide Bandwidth”, Appl. Phys. Lett., 116, 202904 (2020). 通訊作者

[95] Hsin-Yu Yao and Tsun-Hsu Chang*, “Time-domain analysis of superluminal effect for one-dimensional Fabry-Pérot cavity,” Chinese Journal of Physics 67, 657–665 (2020). 通訊作者

[96] Hsin-Yu Yao, Dan-Ru Hsiao, and Tsun-Hsu Chang*, “Fast, Nondestructive, and Broadband Dielectric Characterization for Polymer Sheets,” Polymers, 12, 1891(2020).通訊作者

[97] Cheng-Hung Tsai, Tsun-Hsu Chang*, Y. Tatematsu, Y. Yamaguchi, M. Fukunari, T. Saito, and T. Idehara, “Reflective Gyrotron Backward-Wave Oscillator with Piecewise Frequency Tunability”, IEEE Trans. on Electron Devices 68, 324-329 (2020). DOI: 10.1109/TED.2020.3036323 通訊作者

[98] Che-Hao Chang, Shih-Chieh Su, Tsun-Hsu Chang*, & Ching-Ray Chang**, “Frequency-induced Superdiamagnetism in Epoxy/Magnetite Nanocomposites,” Scientific Reports, (2020) Accepted in publication. 通訊作者

[99] Hsien-Wen Chao, Wen-Ju Lai, and Tsun-Hsu Chang*, “Gyro-magnetically Induced Transparency and Opaqueness at Microwave Frequency,” Sensors and Actuators A (2020). Under review. 通訊作者

 

 

 

Book Chapter

l   Tsun-Hsu Chang, “Ferrite materials and applications,” in Electromagnetic Materials, IntechOpen, 2019. DOI: http://dx.doi.org/10.5772/intechopen.84623

 

Chinese Journal Papers:

1.  張存續*, 鄭復興, 與楊滋德, “真空爐焊接技術探討”, 真空科技, 12, 4, p.36, (1999)

2.  洪健倫, 張存續, 朱國瑞, 戴涪, 與呂康威, “應用於大面積微波電漿源之輻射共振腔原理探討”, 真空科技, 13, 3, p.25, (2000)

3.  張存續*, “高速數位電路之電源完整性”, 電子月刊, 二月號, pp. 186-193 (2003). (每月精選)

4.  朱國瑞、張存續、陳仕宏, “電子迴旋脈射 -- 原理及應用”, 物理雙月刊, 四月號 (2006)

5.  朱國瑞, 柏賴德, 張存續, 張宏宜, 姜惟元, 戴伶潔, 余青芳, 寇崇善, 鄭世裕, “一個應用微波處理材料的新工具”, 工業材料, 十二月號, pp.77-80 (2004)

6.  張存續*, “微波與材料之頻率響應與反應特性”, 工業材料, 十二月號, pp.81-87 (2004)

7.  張存續*, “高功率可調頻太赫茲波源---電子磁旋脈射”, 物理雙月刊, 四月號 (2009)

8.  張存續*、陳乃慶、杜朝海、袁景濱, "真空電子學之磁旋管發展" 真空科技 25卷 第1 pp.63-702012)。

9.  趙賢文, 張存續*。高介電係數與低損耗材料之先進測量技術。工業材料 355, pp. 131-1392016)。

10.張存續*。從選擇研究方向的故事談到和朱國瑞老師一起奮鬥的經驗。科技部科技大觀園(2018)。https://scitechvista.nat.gov.tw/c/sTCu.htm

 

其他(專利、技轉及產學合作等績效)

 

專利名稱

國別

專利號碼

發明人

發明

圓極化循迴器

台灣

125309

戴涪, 許覺良, 朱國瑞, 馮嘉鳴, 張存續, 呂康威

發明

300FECR電漿機台設備

台灣

137744

戴涪,許覺良, 朱國瑞, 李學志, 彭國源, 賈漢榮, 賀克勤, 張存續

發明

功率分配系統之共振頻率之調離方法

台灣

I221237

張存續

發明

Method of Detuning Resonant Frequencies of a Power Distribution System

US

7,102,466

T. H. Chang

發明

藉由外部耦合電阻性終結器降低功率分配系統中之開關雜訊之方法

台灣

580791

張存續

發明

Method of Reducing Switching Noise in a Power Distribution System by External Coupled Resistive Terminations

US

6,903,634

T. H. Chang and J. Chen

發明

極化高次模電磁波耦合器及耦合方法

台灣

I267231

余青芳, 張存續

發明

Novel polarization controllable TE21 mode converter

US

7394335

T.H. Chang, C. F. Yu, and C.T. Fan

發明

成比例配置分流裝置之高次模電磁波耦合器及耦合方法

台灣

I267226

張存續, 余青芳

發明

High Performance TE01 mode converter

US

7,396,011

T. H. Chang and C. F. Yu,

發明

可調式材料處理裝置

台灣

I260816

張宏宜,張存續,連曼均,鄭世裕,盧佳卉,方文志

發明

近光學式材料處理裝置

台灣

I252063

朱國瑞, 柏賴德, 張存續, 張宏宜, 姜惟元, 余青芳, 戴伶潔, 鄭世裕, 寇崇善

發明

Quasi-optical material treatment apparatus

US

7,381,932

L.R Barnett, K. R. Chu, T. H. Chang, H. Y. Chang, W.Y. Chiang, C. F. Yu, L. C. Tai, S.Y. Cheng, C.S. Kou

發明

模式轉換器及具有此模式轉換器之微波旋轉接頭

台灣

I365571

張存續, 余博仁

發明

Mode Converter and Microwave Rotary Joint with the Mode Converter

US

7973613 B2

T. H. Chang and B. R. Yu

發明

Microwave supplying apparatus and microwave plasma system

US

8228007 B2

T.H. Chang, P. H. Lin, C. C. Huang

發明

可模式選擇之磁旋管之作用結構

台灣

I403020

陳乃慶、張存續

發明

Mode-Selective Interactive Structure for Gyrotrons

US

8,390,199 B2

N. C. Chen and T. H, Chang

發明

Isolated dual-mode converter and application thereof

US

8324985 B2

T.H, Chang, N. C. Chen, and C. T. Wu

發明

微波繞射系統

台灣

I420099

張存續、袁景濱

發明

微波繞射系統

大陸

1313865

張存續、袁景濱

發明

Microwave diffraction system

US

8,552,743 B2

T.H, Chang, C. P. Yuan

發明

Method of crystallization of amorphous silicon films by microwave irradiation

US 2013/0029497A1 T.H. Chang, T. S. Chin, H.S. Chao, S. C. Fong

發明

多槽式微波裝置及其處理系統

台灣

I463919

張存續, 金重勳, 趙賢文, 方世杰

發明

Multi-Slot Microwave Device and Processing System Thereof

US

9,006,626 B2

T.H. Chang, T. S. Chin, H.S. Chao, S. C. Fong

發明

相互隔離之雙模轉換器及其應用

台灣

I424611

張存續、陳乃慶、吳俊潭

發明

Isolated Dual-Mode Converter and Applications Thereof

US

8,324,985 B2

T. H. Chang, N. C. Chen, C. T. Wu

發明 Multi-channel mode converter and rotary joint operating with a series of TE and TM mode electromagnetic wave US 2013/0257563A1 N. C. Chen and T. H, Chang

發明

電磁波真空窗

台灣

I431656

胡起雯,黃重鈞,于仁斌,陳朝治,張存續,陳乃慶,陳振瑋

發明 量測介電常數之系統及方法 台灣 I546543 張存續、趙賢文、翁唯軒
發明 System and method for measuring permittivity US 9,810,645 B2 Tsun-Hsu Chang, Hsein-Wen Chao, Wei-Syuan Wong
發明 微波處理裝置 台灣 I686105 張存續、趙賢文、陳勝富

 

 

 

技轉

合約名稱

授權對象

合約生效日期

金額

1

大面積且均勻微波場之設計與模擬

巨亞機械

201204~201503

200,000

2

優化高頻加速共振腔效能

錫安生技

201402~201601

400,000

3

高頻加速共振腔之精進設計

錫安生技

201604~201703

303.600

4

高速電路板之高頻特性量測與分析I

欣興電子

201510~201609

135,000

5

高速電路板之高頻特性量測與分析II

欣興電子

201701~201712

135,000

6

碳材料之微波熱處理與特性量測(1/3)

永虹材料

201610~201709

135,000

7

碳材料之微波熱處理與特性量測(2/3)

永虹材料

201710~201809

135,000

8

生質柴油之微波製程研發(1/3)

承德油脂

201610~201709

255,000

9

生質柴油之微波製程研發(2/3)

承德油脂

201710~201809

255,000

10

超小型環行器之分析及0.295-0.96GHz環行器開發

中國鋼鐵

201805~201904

142,500

11

自黏塗膜電磁鋼片微波膠合技術

中國鋼鐵

201810~201903

180,000

12

產學合作計畫─快速與均勻之微波材料反應(1/3)

承德油脂

201811~201910             (科技部產學合作計畫)

1,050,000              企業配合款

13

產學合作計畫─快速與均勻之微波材料反應(2/3)

承德油脂

201911~202010             (科技部產學合作計畫)

1,050,000              企業配合款

14

產學合作計畫─快速與均勻之微波材料反應(3/3)

承德油脂

202011~202110             (科技部產學合作計畫)

1,050,000              企業配合款