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We study the magnetoplasmon collective-mode excitations of integer quantum Hall systems in a paraboli-
cally confined quantum well nanostructure in the presence of a tilted magnetic field by using the time-
dependent Hartree-Fock approximation. For even integer filling, we find that the dispersion of a spin density
mode has a magnetoroton minimum at finite wave vectors, at a few tinfesni¥ for parallel fields of order
1-10 T,only in the direction perpendicular to the in-plane magnetic field, while the mode energy increases
monotonously with wave vector parallel to the in-plane magnetic field. When the in-plane magnetic field is
strong enougtiwell above 10 J,we speculate that this roton minimum may reach zero energy, suggesting a
possible second-order phase transition to a state with broken translational and spin symmetries. We discuss the
possibility for observing such parallel field-induced quantum phase transitions. We also derive an expression
for the dielectric function within the time-dependent Hartree-Fock approximation and include screening effects
in our magnetoplasmon calculation. We discuss several exotic symmetry-broken phases that may be stable in
finite parallel fields, and propose that the transport anisotropy, observed recently in parallel field experiments,
may be due to the formation of a skyrmion stripe phase predicted in our theory. Our predicted anisotropic finite
wave-vector suppression, perhaps even a mode softening leading to the quantum phase transition to the
anisotropic phase, in the collective spin excitation mode of the wide well system in the direction transverse to
the applied parallel magnetic field should be directly experimentally observable via the inelastic light-scattering

spectroscopy.
DOI: 10.1103/PhysRevB.66.195334 PACS nuni®er73.43.Nq, 73.43.Lp, 73.43.Cd
[. INTRODUCTION second situation, where a tilted magnetic field is applied to a

wide width well (WWW) system to couple subbands of a

Observations of integral quantum Hall effeQHE, wide well with spin-split Landau levels, has not yet been
1980 and fractional quantum Hall effe€EFQHE, 1982 are  extensively explored. One reason for this is that the strength
important landmarks of condensed-matter physics in recerdf the applied tilted magnetic field has to be very large
decades. In quantum Hall systems, electrons are “frozen” (>25 T) in order to sufficiently enhance the Zeeman energy
(in their orbital motion in discrete Landau levels by the to be comparable to the Landau-level separation in GaAs.
external magnetic field, and have gapped excitations at inteéSuch strong and uniform magnetic fields has only been avail-
ger or fractional filling factors. There is considerable rich-able very recently.From a theoretical point of view, study-
ness of the phase diagram when additiofal., in addition ing QH effects in a WWW with tilted magnetic field is dif-
to the orbital motioh degrees of freedom associated with ficult because the in-plane magnetic field hybridizes the 2D
spin, layer, or subband index are introdu¢ediThese mul- electron subbands arising from the confinement potential in
ticomponent quantum Hall systems have been extensivelthe growth direction(i.e., perpendicular to the 2D plane
studied both theoretically and experimentally in recent yearswith the orbital Landau levels so that the electron wave func-
In general, since the spifZeeman energy is much smaller tion of a WWW is a complicated combination of electric
than the cyclotron energy due to the small effectiviactor  (“subbands” and magnetid“Landau levels” quantization
and the small effective mass of electrons in GaAs based Qldven at the single-particle level. It is sometimes simplisti-
systems, the spin degree of freedom is not important enecally believed that if parameters are chosen properly in an
getically compared to the orbital motion. But spin can beisospin language, then a WWW system in a tilted fieddl
crucial when a second quantum Hall system is coupled coleast foy the closest two Landau levels near the degeneracy
herently [for example, in a double quantum we&DQW) point could be approximately mapped onto a DQW system.
systenj or an additional magnetic field is applied in the di- We emphasize that this mapping is not exact and misses
rection parallel to the two-dimensioné2D) semiconductor subtle and interesting physics associated with a WWW in a
quantum well plane. In the first situation, the finite barriertilted field. For example, experimentally a WWW in a tilted
energy between the two wells opens a gAg {9 between a field is found to display both three-dimension@D) and
symmetric and an antisymmetric subbands, which can bavo-dimensional properti€s.In some situations a WWW
tuned by electron tunneling, layer separation, and/or biasystem could behave very much like a DQW systgtbeit
voltage? WhenAgsis close to the Zeeman splitting energy, with strong tunneling® More strikingly, the recent observa-
interesting physics has been predicted theoretitalfyd ob-  tion of anisotropic resistance at even filling factors in a
served experimentalR® On the other hand, physics of the WWW system with an in-plane fieldshows a possible stripe
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phase formation induced by electron-electron interactiorpositive background charge densifyrurthermore, the para-
near a degeneracy or a level crossing pdint. bolic confinement potential can be exactly diagonalized in a
Inspired by the observed anisotropic transport propertiesenter-of-mass coordinate and therefore gives a non-spin-flip
at integer filling factors, we investigate in this paper the optical absorption energy exactly the same as its noninteract-
collective-mode excitations of integer quantum Hall systemsng result in the long-wavelength limithe so-called gener-
in a wide quantum well with a tilted magnetic fie{de., in  alized Kohn’s theorem™>* As mentioned above, we use a
the presence of an in-plane magnetic fiddgl using the time-  parabolic confinement potential, because it allows us to find
dependent Hartree-Fock approximatihDHFA). We ex-  simple noninteracting eigenstates in the presence of a tilted
tend the work of Kallin and Halperth for a strictly 2D sys-  magnetic field, which then provides a good starting point to
tem, i.e., a zero width wellZWW) to a WWW system and consider many-body effects. The effectsioiperfectpara-
derive a full analytical expression for the mode dispersiorbolic confinement potential on the collective excitations have
energy. To keep our theory analytically tractable we choosearlier been studied either with only a perpendicular mag-
our quantum well confinement potential to be parabolicnetic field® or with only an in-plane magnetic fiefd.Only
(“parabolic well”). Our choice of parabolic confinement is rather small quantitative corrections were fouffdr ex-
dictated by the fact that the corresponding single-particleemple, small shift of resonance energy, and slight broadening
problem(i.e., an electron moving in a one-dimensional para-of the absorption peaKor realistic wells(which necessarily
bolic potential along the direction in the presence of an deviate from ideal parabolic confinement considered in our
arbitrary magnetic fieldcan be exactly analytically solved work). We believe therefore that our theoretical results
enabling essentially a complete analytic solution of theshould apply with quantitative accuracy to realistic parabolic
many-body TDHF solution of the collective-mode spectraquantum wells, and qualitatively to rectangular quantum
(essentially on the same footing as the 2D Kallin-Halperinwells !’
work in Ref. 13 in the WWW system in the presence of a It is generally believed that in both three and two dimen-
tilted magnetic fieldi.e., both the in-plane field and the per- sions, when an infinitely strong magnetic field is applied,
pendicular field producing the Landau quantizatiomhe electrons undergo a phase transition to a Wigner crystal state
work presented in this paper is therefore a ditactd highly ~ with broken translational symmetry at low temperatures. In
non-trivial) generalization of the strictly 2D Kallin-Halperin the intermediate magnetic-field region, Celli and Mertiin
work!! on the magnetoplasmons of a 2D electron @ashe  proposed a long time ago a possible exchange induced spin-
presence of only a perpendicular magnetic figlla para- density-wave(SDW) instability in a three-dimensional elec-
bolic WWW system in the presence of a tilted magnetic field.tron system. More recently, GaAs based semiconductor wide
We study both charge and spin mode collective excitations iparabolic wells have been proposed as good candidates for
systems of different electron densities, magnetic fieldobserving such SDW instabilities since wide parabolic wells
strengths, and well widths. At even integer factors, we findare essentially ideal 3D electron systét$?° Brey and
that the dispersion of spin-density mode has a magnetorotd1-=lalperi|¥0 proposed that the SDW instability and the trans-
minimum only at a finite wave vector in the direction per- port anisotropy should be observed in a wide parabolic semi-
pendicular to the in-plane magnetic field, while it increasesconductor quantum well system when an intermediate in-
monotonously with respect to the wave vector parallel to theplane magnetic field is applied. Similarly, correlation-driven
in-plane magnetic field. When the in-plane magnetic field isntersubband SDW instability has been predicted by Das
sufficiently strong, this roton minimum may reach zero en-Sarma and Tamborenea in DQW systems at low carrier
ergy before the ground state becomes polarized, suggestingansities>  Intersubband-induced  charge-density-wave
possible second-order phase transition to a state with brokei©DW) instability in a wide parabolic well with a perpen-
translational and spin symmetries. The possibility of thisdicular magnetic field was also investigatédio the best of
guantum phase transitiofto an anisotropic symmetry- our knowledge, however, these theoretically propdsechs-
broken statgin the presence of a tilted field is one main lational symmetry breakinginstabilities have not yet been
different result of our work. We also derive the full formula observed experimentally. The only two experimentally ob-
for the dielectric function of the system within TDHFA by served candidates for charg@r spiny density-wave insta-
including the ladder diagrams consistently, so that it can béility in a quantum Hall system are the stripe phasesl the
applied to other systems even when only few Landau levelassociate liquid-crystal phagdsin high half-odd-integer
are occupied. We include such screening in our collectivequantum Hall systemsu=9/2,11/2, etd,?* with or without
mode calculation and discuss its effect to the magnetorotoim-plane magnetic field, and the stripe phases observed in an
minimum. integer quantum Hall system in a wide well subject to a
Before jumping into the details of the collective-mode strong tilted magnetic fieldAlthough the ground state of the
calculation, it is instructive to discuss in the appropriate conformer system has been extensively stuéfleahd is gener-
text some earlier work in parabolic wells and in the ground-ally believed to be a “unidirectional coherent charge-density
state instability(i.e., the softening of collective modesf ~ wave,”?*>? the transport anisotropy in the wide well with a
similar systems. Among the models of finite width wells, tilted magnetic field is not yet understood and not much
parabolic wells are considered special, because the electraheoretical work has appeared on this problem except for our
gas, in screening the parabolic conduction-band edge potenecent short communicatidii.Our recent work’ based on
tial, forms a constant density slab, being a good approximaHartree-FockHF) calculation in a DQW system shows that
tion to a 3D jellium where electrons move in a constantspin-charge-texturéskyrmion stripe could be the possible
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ground state for a WWW system, providing a possible explawhereug is the Bohr magneton, argh-0.44 for GaAsS, is
nation for the observed transport anisotropy in Ref. 7. In thigthez component of the spin operator along the total magnetic
paper, we show the complete analytical and numerical workield, whose magnitude i8,,= ‘/BE + Bz\l- py is a good

in calculating the collective magnetoplasmon mode disperquantum number in this gauge and can be replaced by a
sion within TDHFA and the observed mode softening con-constantk (the guiding center coordingteThe remaining
firms the existence of the unusual phase proposed in Ref. 2¢erms can be expressed by & 2 matrix,

This paper is organized as follows. In Sec. Il we obtain
the single-electron eigenstates in a parabolic confinement po-
tential with a tilted magnetic field. We first discuss the non-_, 1 s o M*
interacting result in Sec. Il A and then the interactihtf) Ho_ﬁ(pﬁ py)+ T[X Z]-
result in Sec. Il B. In Sec. Il C we show that at even filling
factors the system undergoes a first-order phase transition —,S,, (2
from an unpolarized ground state for in-plane magnetic field,

B)<Bj", whereB[ is a critical in-plane field strength, to a \yhere «, |=eB, j/m*c, wp= /_2_2“’0+"’H’ ©,=9ueBiots
polarized ground state f@> B[ . Based on the unpolarized znd x’=x+ ck/eB'L. The Hamiltonian of Eq(2) can be
integral quantum Hall ground state, the full theory with nu-gjagonalized by a canonical transformatiorix’,z]"
merical results for the magnetoplasmon disperdpithin = _ ~/ 5\ v 51T T—0(0)-To. 0,17, with
TDHFA) are given in Sec. lll. In Sec. IV we derive the U(0)-[x.2]" and[pc.pl =U(6)- [Py, Pel’, wit
TDHF dynamical dielectric function for an integer quantum

Hall system in a parabolic well with tilted magnetic field and

use the result to study the magnetoplasmon dispersion in u(e)
screened TDHFA. Implications of our results are discussed in

Sec. V and finally we summarize our work in Sec. VI.
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and tan(?)= - 2w, w/(wj— »?). The new Hamiltonian
Il SINGLE ELECTRON EIGENSTATES desc-rlbes .two def:oupled one-dlme_nS|o(‘iE])) simple har-
AND GROUND-STATE ENERGY monic oscillators in new coordinates,and z:

A. Noninteracting system
* *

. . . LA —_1—2—2 mw;— Mw;—

We consider a parabolic confinement potentiat idirec- Ho= . (py TPy + 5 X+ 5 Z—w,S,, (4
tion, U,(z) = 3 m* w§z?, wherem* is the electron effective 2m
mass andvg is the confinement energy. A coordinate system
is chosen such that the perpendicular magnetic figlds in ~ where
z direction and the parallel magnetic fielj in x direction,
with the 2D electron system being in thxey plane. When
the vector potential is chosen in a Landau gaude,
=(0,B, x—Byz,0), the noninteracting single electron Hamil-
tonian can be written asve seti =1 throughout this papgr

1
wi2=§[(w§+wi)i \/(wg—wf)2+4wfwﬁ]. 5)

Using (n,k,s) as eigenstate quantum numbers, whare

1 (. eA\? =(n4,n,) is the orbital Landau level index arg= +1/2 is
H0=2 | p+ < +Up(2) —gugBioiS, the eigenvalugs ofS,, one obtainsO thee noninteracting
m eigenenergie& - _ and eigenfunctions -, (r):
Py 1 eB,x eBz|?
_2m*+2m* T T e 0 1
Eﬁ’5=w1 n1+§ +w2 n2+§ _wZS! (6)
2
1
+——+Sm* 0522~ gueBioS;, )
2m* 2 and
0 . eik_v _ _ eik_v
b (D)= mw&?w PI(z)= mw;ﬁ>[cos Ox-+1gk) —sin 6z]- i [sin O0x+Igk) +cos 6], @)
ECDS X(x+l(2)k,z)
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FIG. 1. Calculated Landau-level energy spectra for noninteract-Gg" —=—— = —»— w _— - e
ing electrons in a parabolic quantum well with a paralletplane @
magnetic fieldB;. The system parameters are chosen to be the
same as the experimental data in Ref. 7 ifer6. FIG. 2. Feynman diagrams of the time-dependent Hartree-Fock

approximation. Solid lines are single-particle Green’s function and
wavy lines are Coulomb interaction. Singléouble lines are bare
(dressefiGreen’s function and/or interactiofa) the self-consistent
Hartree-Fock approximation for the single electron Green’s
wherelL, is the system length ig direction and the function function; (b) and (c) are, respectively, the Dyson’s equations for
@2 S(X+|gk,2) has x and z components only. |, electron-electron interaction, single electron Green’s function

_ x : . : and vertex function in the time-dependent Hartree-Fock approx-
_\/Um @L \/C/eBL is the conventional cyclotron radius. imation. The second term o€) is the ladder series, while the third

L. .0 . .
We keep the spin index @ﬁ,s because these notations will term is the bubble seriedRPA diagram, which does not appear
later be generalized to an interacting system, where expliCiyhen calculating the vertex function for spin-flip excitatidssce
spin dependence may become crucial. In &, the func-  the interaction is spin conservingas mentioned in the text.
tion zﬂﬂ)(x) is defined to be (d) is the Green's function in the first-order Hartree-Fock
approximation.

XZ

. 1
D(x)= ————exg — —
¥n'(X) Va2t p{ 212

X
Hn(l—_). ®

literature?? (iv) Finally we can take the strong parallel
(in-plang magnetic-field limit 8 — ), which is of interest
. ) in this paper. In this limit, we havé@— /2, w;— wj— =,
with ;= 1/m* w; for i=1.2, andlo=y1/m* o, =c/eB,  4pq wy;—wow, lo—0, ie., the in-plane magthic field
is the conventional cyclotron radiul,,(x) is Hermite poly-  gnhances the effective confinement of a wide well system
nomlgl. It is mstrucnye to consider the asymptonc form of [compared to(ii)] and therefore a WWW system with
Fhe eigenstate energies, E§), and_waye fur)ctlons, .Equ'), a strong parallel field becomes similar to a thin wsttictly
in the following four extreme limits{i) Taking an infinite 2D) system with small Landau-level energy separation.
well width limit, wo—0, 01— Jw|+w!, andw,;—0 from  we emphasize, however, that our results shown below apply
Eq. (5), Eq. (4) then shows that the free moving direction is for any finite strength ofB; valid to the lowest order of
restored along the direction, which is perpendicular to the the ratio of the interaction strength to the noninteracting
total magnetic field,,, showing a 3D propertyii) Taking level separation. We will consider the strong in-plane
a zero width limit o—=), we have 8— 7/2, w;— wy _masgnetllti;ﬂeld limit only when studying the screening effect
W (3o @) in Sec. IV.
Hoo(’o)wzﬂwl , and ther(.aforapnl 00— _5(2) and ¥, (.X) Energy levels described by E(p) are shown in Fig. 1 as
— ¢y, (X), the usual orbital wave function of a 1D simple g function of in-plane magnetic field for a choice of param-
harmonic oscillator. Therefore by changing the valuevgf  eters similar to the experimental samples in Ref. 7: electron
one can obtain a quasi-2D system, which has both pure 2@ensityn,=0.42< 10'? cm 2, m* =0.07 mq (m, is the bare
and 3D properties, by taking different limits of the confine- electron mags andwy=7 meV. The confinement energy is
ment potential strength(iii) Similarly, for zero in-plane such that the size of the first subband electron wave function
magnetic-field limit @ —0), we havew;—Max(w, ,wq) in zero field is 260 A. The perpendicular magnetic fiBldis
andw,—Min(w, ,wp), so that the orbital motions mandz  chosen to be 2.97 T for=2.
direction are totally decoupled. This is the us(ad., without Using the noninteracting single-particle wave function in
an in-plane fielgl quantum Hall system in a parabolic well, Eq. (7), the noninteracting single electron Green’s function
whose collective-mode dispersion has been studied in thean be easily obtained:
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> > 0 > >
Go(rl,ﬁ ;r2,72)=2 Z G,j,g(rl,ﬁ;rzﬁz)
g

o

=§Z§¢>S,,<,j(r2>¢>S,,<,(,(F1>e“fTD(E‘ o PLUT— ) B u—Ey )= on— )0y )], )

0
:‘Jn’o(n 72)

where 7; is the imaginary time, ang is chemical potential culate the single-electron wave function self-consistently
at zero temperature. The Heaviside theta funcigr)=1 by including the Hartree and Fock potentials in the single-
for x=0 and is zero otherwise. particle Hamiltonian. This approximation is the standard
leading-order many-body(self-consistent expansion in
the (unscreened Coulomb interactioff whose one-
loop Feynman diagram representation is shown in Fig). 2

When electron-electron interaction is considered, we usén SCHFA, the wave equation for the quantum Hall system
self-consistent Hartree-Fock approximati@CHFA) to cal-  is®°

B. Interacting system in Hartree-Fock approximation

EikoPiko(N)=| Ho+ f dr'V(r=r") 2 vmpships (1) bmps(T') | briolr)

m,p,s

- f AV =) ikl vipobine () bripolF), (10
m,p

wherevy, , s is the filling factor at the specific quantum num- it to get new eigenstates, which are used to calculate the HF
ber, and it satisfies matrix element again iteratively until self-consistency is
achieved. The new single electron Green’s function in
B ) SCHFA is similar to the noninteracting one in E§) except
- 2 Vmp.o> (1D) that the wave functions and energies correspond to the
m,p,o
Hartree-Fock theory:

whereNq, is the total electron numbekl, is the same as in
Eq. (1) by takingp,=k. Note that the positive charge donor 2 b (P b o(F1)
density (which produces the electron gas and thus provides .. nko 1127 nkal L
charge neutrality for the whole systgns not explicitly in- Gholr1.r2;0)= 1
‘cluded above because these donors are usually located far (95 ( iy n o
away from the well in the experiment. In general, this back-
ground doping effect can be effectively included by introduc- => ¢ﬁ,k,oT(F2)¢ﬁ,k,zr( ry)- Gr.o(w),
ing a screening length into the bare Coulomb interaction K
V(q) by writing V(q) = (4 e5)[|a|2+ (27/\)2] Y2 We (12)
take A=620 A in our numerical calculation below to be
comparable to the experimental settinghis regularization
of Coulomb interaction has little quantitative or qualitative propagatorgn S0
effects on the results shown in this paper. The details of the
donor screening and the exact valuenoflo not in any way
affect any of our qualitative conclusions. For the situation we o U(w) = f dte “’tgn LU= [P (13
focus in this paper, electrons are assumed to be uniformly no M
distributed in the 2D well plang.e., vy, ; s is independent of  ang similarly
guiding center coordinatp), and therefore Eq.10) can be
simplified further as shown in Appendix A. To solve the 1
SCHF equation, we first use the noninteracting wave func- G olw)=- 5 TS
tion to calculate the HF matrix elements and then diagonalize lo—E; 0_26 o M

Whereg (w) is Fourier transform of the noninteracting

: (14
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TABLE I. Table of the critical values of the parallel magnetic j,a( ground statél\]= NT"'(O 2)] is expected to happen at
. * - . 1
field B , where a first-order phase transition occurs from an unpoy critical in-plane magnetic fieIBﬁ‘ _In the third column of

larized ground state to a polarized one for the parameters of Ref. Zl'able | we show our numerical calculation results Bﬁ

obtained from Eq(15) in the first-order HF approximation

v Noninteracting Interacting Interacting -
for even filling factorsy=6,8. When the total electron den-
(unscreened (screeneg . > - .
sity is fixed,Bj is larger as the filling factor is lowered by
6 19.8 1.1 12.2 increasing the perpendicular magnetic field. Therefore our
8 19.8 10.4 11.5 HF results qualitatively agree with the experimental data pre-

sented in Ref. 7 except for a lower estimate of the critical
e magnetic fieIdBr , Which may be due to the correlation ef-

where the Hartree-Fock self-energy,; = Ea,,,—EEV(,, is  fects not included in the HF approximation and/or the non-
obtained from the self-consistent solution of the Hartreeparabolicity of the realistic confinement potential of the
Fock problemsee Appendix A, in particular EqA2)]. quantum well sample used in Ref. 7.

C. Level crossing and total energy
) I1l. MAGNETOPLASMON EXCITATIONS
For our purposes, the most important feature of the spec-

tra shown in Fig. 1 is the existence of a single-particle level In this section we will develop the full theory of magne-
crossing atBj=19.8 T (for the noninteracting systgm toplasmon excitations of an integer quantum Hall system
where w;~36 meV, andw,=w,~1 meV. The origin of confined in a parabolic well and subject to a tilted magnetic
this crossing can be understood by considering thdield within TDHFA. For zero width(pure 2D wells with a
asymptotic form of the energy levels in E¢p) for large  Perpendicular magnetic field only, magnetoplasmon modes
parallel magnetic fieldsw,— wow, /w;—0, so that at a Were ir_1vesti_gated in F\’_ef. 10. We note that magne_toplasrr_lon
critical in-plane magnetic field valueB{) w, becomes €xcitations in parabolic wells have been theoretically dis-

: H H 0,22,30-3 B H
smaller than the Zeeman energy leading to the level crossingl'ssed previously in the literatdre in different lim-
shown in Fig. 1. For a noninteracting electron gas this leve[téd conditions. Our work goes beyond results presented in
crossing leads necessarily to (eather trivia) first-order ~ those papers and we derive the exact dispersion of collective
phase transition aBH:B\’I( with an abrupt change in spin modes in the lowest order of the ratio of Coulomb interaction
polarization for systems at even filling factors. Interesting!® the noninteracting Landau-level separation. In a WWW

quantum phase transition that may take place around thi‘é’ith tilted magnetic field, there is no translational symmetry

level crossing is the main subject of this paper. In particular2/0nd the growth directionz), which is hybridized with the

we wish to investigate whether quantum level repulsion con!N-Plane components«(-y) so that a many-body theory de-

verts this first-order transition to a second-order quantunY€!oP€d in momentum space seems not to be particularly
phase transition around this degeneracy point. Our calculatefeful- However, it is shown below in Sec. Ill A that the
mode dispersion can be directly compared to inelastic lightin-Plane momentum of an electron-hole dipole in such
scattering spectroscopy, when such experiments are event _WW.WIth tilted magnetic _fleld is still conserved, showing
ally carried out in these WWW systems in tilted fields. Oneln€ existence of a well-defined electron-hole bound d@te
can easily use our analytical results to study the magnetdl'@9netic excito}t" and the collective-mode dispersion along

plasmon mode dispersion at odd integer filling factors or fort€ 2D _plane can still be obtained analytically as we show
weaker in-plane magnetic-field valuéshere intersubband below. The full many-body theory and the numerical results

coupling needs to be includgd for collective-mode dispersion are shown in Secs. Il B-IIl E
By using the self-energy obtained from Eq0) in  andin Sec. lll F, respectively.

SCHFA, the total energy of an interacting quantum Hall sys-

tem can be obtained for a given electron configuration

(N;,N,), whereN, is the orbital level index of the highest

filled level of spino. Considering double counting of inter-

action energy, the total energy in HF approximation is

A. Momentum conservation of an electron-hole dipole pair

As pointed out in Ref. 11, a crucial fact that allows one to
explicitly write analytical expressions of the energy disper-
sion of magnetoplasmon excitations is the existence of a
good quantum number in the problem given by the well de-
fined in-plane momentum of the electron-hole dipole pair
(15  (magnetic excitoh It is easy to show that their argument can

be extended to the case of a WWW with arbitrary con-

finement potential along thedirection even in the presence

of a tilted magnetic field. This is not obvious since the tilted
To obtain the ground-state enerfy;, one should compare magnetic field typically hybridizes the in-plane motion with
the total energies of all possible electron configurations anghe subband dynamics perpendicular to the plane, destroying
determine which one giVeS the lowest energy. As indicated ||"[|he apparent trans'ationa| Symmetry_ Consider the Ham“_
Fig. 1, a first-orde(noninteracting phase transition from an  tonian of a magnetic exciton or an electron-hole pair in a
unpolarized ground stafée., N;,=N,=(0,»/2)] to a polar-  general quasi-2D system,

1
- 0 HF
E(NpNp=2 > [Eﬁ,ﬁizﬁ,g-
7 E- <E-
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We define an operato®,=1,2S. ,2S,, respectively, for

2 2
- e. . . e . - -

Hyx=—— <p1_ —A(fl)) +(p2+ —A(r2)> }—V(rl—rz) the spin vertex operator of each corresponding correlation
2m ¢ ¢ function. In this notation the most general form of these cor-
+U(z) +U(2,) (1  relation functions in coordinate spacé’is

1 ’

where particle momentp; , vector potential, and particle 11, (r t;r' t")=—i>, >, [®7\]0'1,02[K]Ui,0é<T[\’Pll(F't)

coordinatesﬂ are all three-dimensional vector‘s’(F) and 9124y,
U(z) are electron-electron Coulomb interaction and the . L
quantum well confinement potential, respectively. The Zee- X‘I’Uz(r,t)‘l’gi(f',t')‘l’aé(f',t')De, (19

man term is neglected here because it is irrelevant for this
discussion. Following Ref. 11 a magnetic exciton momentunwhereWw ! (r,t)[¥ (r,t)] are the electron field creatigian-

operator can be defined to be nihilation) operators of spaceg and spino at time t;
T[-- -] is the time-order operator, afd- - )¢ is the expec-
e e . . -
2 > Ko Ko7 =1 -z tation value of the interacting ground state. In a WWW sys-
=p1+pPo— =[A(r{) —A(rs) ]+ =BiotX(r{—r5), - . . .
Qx=P1t P2~ CIAN) —AR) 1+ (BrorX (1 —12) tem, there is no translational symmetry along #direction

(17) so that one has no correlation function in momentum space
- - A . in thez direction. The usual momentum space description for
whereBy, =B, 2+B)x. Using the Landau gauge for the vec- o \ertex function and the related Dyson's equation then
tor potential one can easily verify that the in-plane compo-geems not feasible because the in-plane magnetic field mixes
nents Qx ; = (Qxx,Qxy) commute with the Hamiltonian. the z dynamics with in-plane dynamié&2?3!Actually the
Existence of dipole excitations with well defined momentasystem is more like a 2D quantum &bin the x-z plane
(eigenvalues OQ-)XVJ_) immediately follows from this com- confined by two independent parabolic potentials alongtthe

mutation. Similar to Ref. 11, we can construct the ZerO'and?axes as shown in Eq4) The method we deve'op in
momentum magnetic exciton wave function in a parabolicthis paper, however, enables one to obtain directly the appro-
well with a tilted magnetic field: priate Dyson’s equations for the screened interaction and the
vertex function without evaluating the correlation functions
\If‘fﬁ"f“(Ax,Ay,Z,Az)=f d,]e—inAyllﬁq)ﬁ o (p+AX/2, of Eq_. (19)._The m_agnetoplasmon excitat_ion dispersion and
Mg Na BB the dielectric function relevant for screening can be read out

- directly from our equations given in the next section. Note
+ - .
z AZ/Z)CD”H'%(” AxI2, that the theory developed below is independent of the exact
Z-Az/2), (18 form of the single electron wave function and is completely

general within the TDHFA.
where a hole is in a stanéazﬁ and a particle is in a state
ng=n,+m. For the exciton wave function of finite momen- C. Screened interaction and vertex function
tum g, , one just needs to replacer, =(Ax,Ay) by Ar, Before exploring the many-body theory for the collective
_|(2)de2, and introduce a plane-wave prefactor for themode, we first define the interaction matrix element, which
center-of-mass coordinatéNote that this wave function has Will be used frequently later. Using the interacting single-
additional dynamics alongdirection: center of magg) and ~ particle wave function, the unscreened matrix element of a
relative (Az) coordinates of the electron-hole pair. Other bare Coulomb interactiok(r) can be obtained,
than this additionat dynamics, the only difference between
the exciton wave functions for the ZWW 2D systemith a Vakeke ks s

perpendicular magnetic fieldsee Eq.(B1) or Ref. 11 and M1N4:N2N3 a2
for the WWW with a tilted magnetic fiel¢our interest in this R oL R
papey is that the latter has one more Landau-level quantum ZJ dflf droV(ri=r2) i ko (T Briykyrory
number associated with the subband dynamics induced by
the confinement energy of the well. In Appendix B we show X(M) b ko 0 (T D5 k. 5.((1) 850 800
that the magnetoplasmon energy in our theory can be ex- sres A v e
pressed in terms of the magnetic exciton wave function given 1 KK a2
in Eq. (18). This provides a more comprehensive and physi- ) 2 5k4fk1,fq 5k37k2,q e (larlema)ab
y y
cal picture for understanding the collective-mode excitations d
discussed in this papésee Appendix B in this context Ko (a)é 5 (20)
nyn,,Nyng 710470203’
B. Correlation function where() is the well volume and we define an effective in-
) 3 R . 0107 > > 101 e 0209, >
In the linear-response theory, collective-mode energies areraction, 6154,6263(Q)=V(Q) 6164(_q) ﬁzﬁa(Q)’ where

obtained by the poles of a density correlation functidp,
where N\=p, S, and S,, for the singlet charge density
mode and the three triplet spin-density modes, respectivelyvave functions,

the form factorA>'~)(q) is obtained from the single-particle
inj

195334-7



WANG, DAS SARMA, DEMLER, AND HALPERIN PHYSICAL REVIEW B66, 195334 (2002

o R R . to extend all of our analytical and numerical results to in-
A‘TIUJ = | dre 97 ¢- t - S .

B ()= | dre"™"ds g g (N gu20,T) clude excitations of both orbital quantum numbers. All ana-

: lytical results would retain the same form with additional

X level indices(i.e., other value of;) showing up in the for-
_ Oy g5 - _ 2 . - 1 .
_f dxf dze =Dy o (x—aylo/22) mula. Our numerical results will not be affected at all by this
5 assumption in the strong in-plane magnetic-field region of
Xq)ﬁj ,o,-(X”qu' 0/2.2). (21) our interest where hybridization with highey levels is neg-

Momentum and spin conservations during the scattering prog%'rti)rl:y f’r?;a(ljl'ex\\/;tfiiésnoev)\(’glen?E:?ﬁ;’vf;{:ael ?gér;;gd%ee:g'r?%m
cess have been included in EGO). 9 P '

Note that in the strong parallel magnetic-field regime,the screened Coulomb interactiof(ry,r,,t;—t;), caused
(10 T<By<25 T), only a few Landau levels of the first sub- PY €lectron-hole polarizatiofsee Fig. 2)]:
band f,=0) are occupied at zero temperature sineg
>w, [see Eq.6) and Fig. 1. Therefore we could omit the ~ - - - - - -
first orbital (i.e., subbandlevel index and neglect all inter- V(rl'rz’tl_tZ):V(rl_r2)5(t1_t2)+J dr3f dry
subband transition@.e., excitations between levels of differ- . R R ..
entn,) by assuming for simplicity thai;=0 throughout our XV(ri=r3)II(r3,ty;rg,t)V(ry—ry),
analysis and numerical calculations shown below except (22)
where noted otherwise. In other words, the vector represen-

tation used in Eq.5) for orbital Landau-level indexn  \here H(Fbtl;FZ’tZ):Hp(Flatl;FLtZ) is the reducible
=(n1,nz)=(0n;), is simplified to ben and so are all other  charge polarizabilitysee Eq.(19)]. Multiplying by single-
orbital notations [like m=(0m,)=m and N,=(0,N,) particle wave functions and doing the space integration, Eq.
=N,, etc] from now on in this paper. It is straightforward (22) can be transformed to

v1,4;2,:(t1_t2)zf dFlf droV(r ot =) 1T (1) b2 (1) (1) dalry)
:V1,4;2,ﬁ(t1_t2)+% V1,4;,3a( J dtsdtgG,(t1—ts5)Ga(te—t1)
Xf ¢aT(F5)¢5(Fe)’)’(Fsvts;Feyte;F4:t2)V(F4_F2)¢2T(F2)¢3(F2)
2456

=Vy400(t1—t5) + Eﬁ V1,4;BaTaB;2,3(t1_t2)! (23

where we have introduced a conventional reducible vertexzreen’s functions and one interaction teftmowever,y is the
function, y(r's,ts:fg,ts:l4.t5), in coordinate space to ex- Same as the conventional reducible vertex function in coor-
press the reducible polarizabilify; index a(8) denotes all  dinate space; see Fig(d]. This is because, unlike a ZWW

related quantum numbers of that levet{ s ,Pu(g) » Ta(s) (pu_re _2D |2r; Ref. 11 or a WWW without any in-plane mag-
netic field;“ the z component of the electron wave function

€., %(r):‘ﬁmavpa’%(r)' ga(t):g_maﬁ_a(t)’ Viaas  of our system is not separable and therefore cannot be ig-
=V KaPaPe1%a - gng T o) =T PePeikelai7a0%.92%2 for  nored. It is more convenient to work in the relevant con-

nyng.m,mg T m,MgiNoNg X
simplicity (number indices represent external variabless.erved quantum number space rather than in the conven
tional momentum space.

v_vhﬂe Greek |nd|£:es repres_ent dummy vanables_ N asumma g leading ordefof the ratio of the interaction strength
tion) and J;=fdr;. To avoid confusion, we clarify our no- 15 the noninteracting energy separatias,) of the vertex
tations which are necessarily different from the standarqunction T ., 4t;—tp), is obtained by using

many-body textbook terminology because of the highly com- 'Capi23l 2k
plicated nature of our single-particle wave functions. First

V1,4;2'3andvnln4’n2n3(ﬁ) are different functions according to Y(rs,ts:T6,l6:74,12)

their definition in Eq.(20); secondly thel" function in Eq. =8(F5—T4)8(Fg—r4)d(ts—1t5) S(tg—ts)
(23) is not the same as the conventional definition of a vertex
function due to our inclusion il of additional two electron in Eq. (23):
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[opodti—1) =G (11— 1) Ga(ta— 1) Vyp03, (24 [ op2d@)=Dp(@)Vop23, (25

which has the following Fourier transform in time: where (after retrieving the spin index

(m(rB_ m<ra)w2_ (Uﬁ_ O-a)wz+ iw

Dy @) = , (26)

is nonzero only when the dipole pait(g) represents one o,=o, automatically because of the manifestly spin-
hole in the filled level and one electron in the empty level atconserving non-spin-flip nature of Coulomb interaction. As a
zero temperature. To avoid confusion, here we clarify theconsequence, I' .50 5(t1—t;) in Eq. (25 [but not

meaning ofo(g), My, . @NAN, - in Eq. (26) again:  y(ry,ts;r4,t6;r4,t,) in Eq. (23)] then becomes identically

Ta(p)
T4p) Is the spin quantum number of staté (), Mo s zero when considering spin-flip excitations.
=(O,m%(3))=rﬁga(ﬁ) is the orbital Landau-level index of
state a(B), and N =(0ON, )=N is the orbital D. Dyson’s equations in TDHFA

Ta(p) T %a(p) Ta(B)
Landau level index of the highest filled level of spif, 5 a

first defined in Eq(15). We will see later thab , () is the Including ladder and bubble diagrams as shown in Fig.
only dynamical part of the vacuum electron-hole bubble2(©), Dyson's equation for the full vertex function,
Note that when spin is include¥,, ; ,\ implieso,= oz and I‘aﬁyzyg(tl_tz), is

faB;Z,S(tl_t2):Faﬁ;2,3(t1_t2)+j dtsdtgG, (11— 1t5)Gg(te—ty) S(ts—tg) f2456¢aT(F5)¢B(F6)V(F4_F2)¢2T(F2)¢3(F2)

X —f fdt7dtge(5,7)G(8,6)V(F5—FG)y(F7,t7;F8,t8;F4,t2)}
7,8

+ f dtsdteG,(t—t5)Ga(ts—t1) (s —te) f b (F5) Pa(Ts)V(r4—T2) by (M) a(ry)
2,4,5,6

X Lsf dtydt86<6,7)e<8,6>V<F5—F6>7<F7,t7;r*8,t8;r*4,t2>}, (27)

which can be further simplified to ~
Fop2d®) =T ap2d @)+ Dop(@) 2 [~Vauing
nv

~ Vo T s . 29
Faﬂ;2,3(tl_t2):Faﬁ;2,3(tl_t2)+j dt5ga(t1_t5) o - B M] y23 ,2,3((1)) - ( )
Similarly, the Fourier transform of Eq23) gives
X Gg(ts—t Vst Vags < B =
lts l)% [ #ivh pivn] V1,4;2,iw)—V1,4;2,3+EB Viagal ap2d@).  (30)
XT 24ts— 1), (28)  Equations(29) and (30) are, respectively, Dyson’s equations
for the vertex function and the interaction matrix element in
with the following Fourier transform in time: the quantum numbeg=(m,,p,,0,), space.
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In order to investigate the magnetoplasmon dispersionshown in Eq.(20), we define a new unscreened matrix ele-
one has to integrate out the continuous varidifeEgs.(29)  ment and a new bare vertex function given (Bt g, =g,x
and (30) to get a matrix representation in the level index A .

) . " +qy,y be the in-plane momentum
only. Taking into account the momentum conservation

1
e ky+0ay/2ky—ay/2;ko— q/2k2+q/2 = '
Un.n nn(ch)—z ke kz)qxovl sy y y 2 Vingnona(di»dz), (31)
1423 kq N1Ma:M2N3 277|ng q’ 1har2s

> _ 1 |(k Ko)qyl kq+ay/2.ky—0ay/2;ko— q/2k2+q/2 =
Amamﬂ:nZnS(qJ‘ ’w)_[Dmamﬁ(w)] kE v xo 1—‘m mIBy n,ng Y Y Y mamB;n2n3(QJ_): (32

where LXLy=27rI(2)N¢,, and N, is the degeneracy of each 1 R
Landau level. Note that in Eq$31) and (32) only the in- Uy« ernﬁ mm, (q,)= > VG mm (0L,0;)

2
plane component of momentuq is shown explicitly. This 2mlolz o
follows from the fact that the in-plane exciton momentum is
a good quantum number even in the presence of tilted mag- E V(q q.)
netic field as discussed in Sec. Ill A. Expressions for the 27T|2|_ 2, m
screened matrix elemeti and the full vertex functiom . o -
can be similarly obtained using tfkesummation ovel and X(—ay ’_QQ)AmVVmVM(qL d;). (37)

T as in Egs(31) and(32). After some tedious analysis, we o ) )
obtain the following pair of matrix equations in Landau level ~Note that —the non-spin-flipping interaction, o {
indices: =o,, 0,=0p) for Eq.(36) and (c,=04,0,=0,) for Eq.
(37), is already incorporated above. As mentioned in Sec.
_ . . . Il B, instead of calculating the irreducible polarizability di-
Unngingny (A @) =Up o, o (A0 + 2 Unpngmgm, (o) rectly, we derive the Dyson's equations of the interaction
MaMp matrix element and a special vertex function in E§8) and
(34), which can be used to obtain the collective-mode energy
XD my(@) Amamﬁ ”2”3(qi o) (39 and dielectric function. Above derivation and results are in-
_ . _ dependent of the details of single-particle wave functions or
Amamﬁ;nzna(cﬂ 1“’):Amamﬂ;n2n3(ql ,©)

N+3 - .
+ E Wi «Mgim,m,, (qJ_) m, m(w) N+2 — [ ____
f ' . N+1 T A h_ N+l C__ [ T_-._.
XAmMmV;n2n3(qL ), (34) N 4 4’ ......... m N______"_"u
where the new interaction functiow is _1“2_ _3_ _4 N N-1 ] —
a
Wmamﬁ:m,,mﬂ(dl.)z—umnr% " mB(ql) m mﬁ;mvmﬂ(aé)s-) @ N-2 __1__2__5_;j

The ladder (exciton binding energy U”™d(q,) and the

random-phase-approximatiofRPA) energyU(q,) are re-
spectively(after retrieving the spin index

FIG. 3. Energy-level configuration for electron-hole pair excita-
tions. Solid(dashedl lines are for spin dowriup) levels with level
index in the left-hand sidéhe first orbital level index is set to be
1 zerg, and the upward arrow represents an electron-hole excitation

bindo,o, > \_ ; a2 T, > (a magnetic exciton (a) is for the two 2<2 matrix representation
yLindoaoy (q)=— Z el (axdy qux)lovmumﬂ ;mvmﬁ(q’) of Egs.(41) and(42): electron-hole pairs of numbers 1 and 2 are for
Y., and numbers 3 and 4 are f¥r,, respectively(b) shows the
, Lo configuration for one spin-flip excitationS¢= + 1) including next
oY Z cogdxdy — dydy)1o higher-order energy excitations, which are beyond the TDHFA de-
a veloped in the papefNote that in(b), the excitation from leveh to
CINAT T SINATYTy n+2 does not couple to pair number 1 due to parity symmetry in a
xV(q )Amamu( q )Amvmﬁ(q ) (36 parabolic well]

q ’
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eigenenergies, and are valid for arbitrary quantum well conmodes here until we get to the final results in the following
finement potential, provided the relevant form functionsection.

A‘n’i‘r‘]’ji(q) of Eq. (21) is appropriately modified. In consider-
ing the spin degree of freedom, only non-spin-flip modes are

included in Eqs(33) and (34). The spin-flip modes do not
include the bubble diagram due to the spin conservation im-
plied by the interaction shown in Eq(33), and Solving Eq. (34) one can obtain the vertex function,
Wi, mg:m,m, (d1) of Eq.(35) therefore b%comes the same asy .. . (. ,»), and substitute it in Eq(33) to get the
the exciton binding energwﬁ;;‘n‘iﬂ;mvmﬂ(qg, for the same full formula for screened Coulomb interactiofusing

reason. For convenience we will not distinguish these tWQ’\mﬂmv;nZnS(a’,aL):Umumv;nan(ai) according to Eq(32)]:

E. Energy dispersion of magnetoplasmon excitations:
Analytical expression

Dn1n4,n2n3(a’aaL) = Un1n4,n2n3(c_il)

+ > unln4;mﬁma<dL>Dmamﬂ<w>m§nv [0 = Dimmy(@)Win m i (601 A inpng (01 @)

mymg

=m§ﬁ Unyngimgm, (G0)Le ™ (@,00) T mg inyngs (38)

where the dielectric functiong(w,ﬁi), is a matrix function, ¢ from deI{Y(w,ﬁl)}zo, or more conveniently, the same

as solving the eigenvalue equation b’f(O,cL) because
Y(w,q,)=Y(04,)+iw-1, wherel is the identity matrix
due to the special form dDmamB(“’) in Eq. (26). Therefore
focusing on the collective-mode dispersion in this section,
- we will discuss the dispersion matn’é(o,(il) below in more
XUm#mv;“zns(QL)’ (39 detail instead of the dielectric function itself, which is stud-
ied in the next section. We note that this theoretical simpli-
fication of the equivalence between the simple stétfanc-

(.00 mim, npng

= 5n2mﬂ5n3ma_ mEm [Ymamﬂ ,mMmy(wuai)]_l
'y

and the “dispersion matrixy is

Ymamﬁ,m mu(waai)z{_ﬁmdm 5m5mu[Dmam3(“’)]7l tion ar_md the dynqm|calld|electr|c functpn in obtaining t.he
K K collective-mode dispersion has not earlier been appreciated
+Wmﬁmy;mﬂma(qi)}- (40) in the literature.

_ _ _ _ o According to Eq.(26), the only valid matrix element of
The TDHF dynamical dielectric function appearing in Egs.Eq. (40) should be for the pairr, ,mg) of one electron in
(39 and (40) includes infinite series of both RPA bubble zp empty level,m,(mg), and one hole in a filled level,
diagrams and the excitonic ladder diagrams. Theoreticallyy, (m,). To the lowest order of €/eoly)/w,, only four
given a finite matrix size by including relevant Landau Ievels|efje|sa N, 1), (N,]), (N+1,7), and N+1,]) are included
(i_.e., by appropriately cutting off the infinite matrix equationst[see Fig. 8)], whereN=»/2—1 is the level index of the
give abovg, one can numerically calculate each element Ofhighest filled level(note the first Landau index has been
the dielectric function and obtain the collective-mode d'SperTaken to be zero After separating spin-flip and non-spin-flip

sions b)ﬁ solving the standard collective-mode equationmodes, one can obtain two<2 Y matrices for spin-flip &)
defe(w,q,)}=0. However, it is easy to see from EQR9  and non-spin-flip f) excitations respectivelyafter retriev-
that solvingw from de{e(w,q,)}=0 is the same as solving ing the spin index

v (a = AErl\JTNJrl_URli“,dNleNH(aL) _Uﬁlil(}i'ilNNJrl(aL) ] (41)
o\M4L/)— : > . N y
—Uﬁ'ﬂ‘i‘ﬁﬂmm(qﬁ AEIT\JLNJrl_UIkle“,dNE}lNJrl(qL)
Y (G))= AElNlN+l_Uﬁiplfjl\'llJrl1N+l(ai)+UlNlN+l,N+lN(aL) ULNTN+1,N+1N(C_L) 42
pldL)= - i - -
UTNLN+1,N+1N(qL) AETNTNH_Ualﬂ,dl\mll\lﬂ(ql)“‘UTNTN+1,N+1N(QL)
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where AE;H:Z:Eg " —Eg " +§§FU _EEFU is the malized by a self-consistent equatifsee Fig. 2d)]. It is
12 ere A o2zt shown later that such a first-order Hartree-Fock approxima-
) ] 9 - . tion does capture the most important contribution of the
diagonal term in¥,(q,) is omitted in the paper by gcHEA, butis computationally much easier than the numeri-
Kallin and Halperirl for a ZWW system, because they just ¢4 results from the SCHF equations. In fact, as mentioned
considered the leading 9rder><]1 ‘matrix representation of pefore, the TDHFA in solving collective-mode dispersion is
Y. Using URT 8 s in(d0) =[URKTi w100, )], wecan  exact only to the leading order in the interaction. Therefore
obtain the dispersions of three spin collective modes and on@ some sense thesingleparticle wave functions and
charge collective mode accordingly by solving eigenenergies calculated in the full SCHFA are not guaran-
the determinantal equation for [note that for systems teed to give bettecollectivemode dispersion energies than
of even filling factor, v=2(N+1), the spin index can those calculated in the simple first-order HF approximation,
be neglected in the self-ener@ﬁ"i and interactionsyJ and  although the former may very well be better in calculating
uPind if the ground state is unpolarized and hence spirthe single electron propertigsuch as the electron density
symmetrid: profile or absorption spectrd) In fact, we believe that in the
spirit of our TDHFA calculation for the collective-mode dis-
persion, it is actuallybetterto use the first-order HF wave
functions and energies in the collective-mode calculation in

HF single-particle energy difference. Note that the off-

wh((il)=w2+EH51_EHF_Um,dmmu(ai) view of the excitations of the theory in the leading-order
Coulomb interaction. The use of such first-order HF wave
i = functions and energies in the TDHFA calculation of

Vo2 +[URR e a(d) 74, (43 g

collective-mode dispersions ensures that all quantities enter-
ing the theory are leading order in the Coulomb interaction.
Therefore it is instructive to show the corresponding formula
of the first-order HF approximation in our theory here and

0y (4)= 0+ 215~ 28T = URKSs an1(dL) we will compare the two sets of numerical resuUCHF
and first-order HFF in the next section. Defining the first-
+Vwl+| URNS 1w 10001 %/4, (44)  order interaction matrix element similar to E80) and(21)
by using the noninteracting wave functions in Eg@), we
have

w0, (G)=w,+ SR —SHF-UBRY (L 1(d)), (45)

O3, 5 [ = _ig.i 0 o .
A ’(q)—fdre e —ag2e, (D g4
wp(cﬂ):w2+EH51_EHF_URIIII\],dN-%—lN-f—l(QL) f _ _ .
R = dxf dz e 192p . (x—q,l§/2.2)
+2Unnt N+ an(dy)- (46) ni.oj
Xd2 (x+q,l222), (47)
177

Equationg43)—(46) are our main analytical results in this
paper, which are the formal generalizations of the corre-

sponding results in Ref. 11 to a WWW iin the tilted field, \,nnse analytical expression for a parabolic well could be
except for the square-root term in Eqé3) and (44). This  ohiained by using the generalized Laguerre polynomial dis-
shows that the off-diagonal term 8f,(q,) is an exchange- cussed in Appendix C. As a consequence, one can also obtain
interaction-induced level-repulsing effect for the two spinthe analytical expression corresponding to Hed)—(46) in
triplet modesw,,, and effectively increases the Zeeman en-the first-order Hartree-Fock approximation. For convenience,
ergy. Note that the analytical derivation given above is nofye first define two new dimensionless quantit'@gf(a) and
related to any specific form of the single-particle wave func-Qz(a)’ as following:

tion which enters only through the actual calculations of the

various matrix elements in Eq$43)—(46). The only con-

straint on the wave functions is that they must be obtained in . cog0(qylg)?+ (coshaylo—sin 6,1 o) *A 7

a conserving approximations. There are several approxima- Qu(q)= 2\, '

tions we can use to obtain the single-particle wave functions (48)

and eigenenergies. Here we will compare two of them: one is
the fully SCHF approximation as shown in E40), and the

. ) e ; i 2
other one is the first-order Hartree-Fock approximation, N sin?0(ay o)+ (sin 6q,l o+ c0s00,l 0)*A
where electron Hartree and Fock potential are calculated by 2(d 2\, '
noninteracting electron wave functions, which are not renor- (49
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The first-order RPAdirect energy then becomdsuppress- exd — -,
ing the spin index heje A —Qu(a.,a,)]

i 1 i xexf —Qa(d, .a)]
Uf\lllel,NJrlN(ql): — E V(q, ,q£)|A(O)

N+1N((Eij_ .q;)l2 R R
2mliL, o X Qa(q. ,q,)| LA Qa(d, ,an]l?  (50)
B 1
2m3L,(n+1)

2 V(a,QD whereL['(x) is the generalized Laguerre polynomial and the
a,

first-order exciton bindingexchanggenergy is

U (Q).bind

- 1 - - >
RRNE TN 1(00) = g 25 cog(adly = ayaIEIV(a)AR(—a") AR 1n4(d")
q

q 2 cod (A~ aya0l§1V(a )exd —Qu(d}) lexi — Qa(dl) LRI Q2(a!) LR 41[Q(d])]-
q

(51
For the first-order HF self-energy, it is more convenient and instructive to show the self-energy difference between levels
N andN+1 individually for the direct or the Hartree ternx{') and the exchange or the Fock ter@™)

N
; ;o V() APA)TAL 1+ 1(9) —AR(a,) ]

_2’7T|(2)|_Z

= oL ; V(a,)exd — Qy(ay) lexd — Q(ay) LY, [ Qa(ay)]-L [Qz<qz>]}2 LY[Qa(a))], (52

_1 N N
SPE-3PF=-5 3 V<q>[20| Rea(@*= 2 AR (@) }

-1
o 2 V(@exi -~ Qu(q)]exd - Qz(Q)]N. E[Qz(q)]'“ !
q

N+1Qz<q>|L“+1 TQx()]I?

—||-|N_'(Qz(ﬁ)|2} (53)

It is easy to prove that

by using the following two identities for the generalized La-
guerre polynomials:
2(1),H_2&1),H:

> m+1 — m
@k _2U§\|1l21+1,N+1N(0)1 XLy (x)=(n+m+1)L7(x) = (n+ 1)L (%)

n
m 1 m+1
SOSPTURR O 6 2, LH00=L 0. 9
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FIG. 4. Magnetoplasmon dispersions fie+6 andB (alongx
direction is 11 T, calculated from Eq$44) and(46). (a) and(b) are FIG. 5. Charge mode dispersian,(q,) of magnetoplasmon
for momentum alongc andy directions, respectively. Thickhin)  gycitations of the same system as used in Fig. 4 but for different
lines are for wave functions calculated from self-consistent Hartreejjjing factors, v=2, 4, 6 and 8, for comparison.
Fock and from first-order Hartree-Fock approximations, respec-
tively.
F. Energy dispersions of magnetoplasmon excitations:
Numerical results

The two 2x 2 matrices shown in Eq$41) and (42) give
ifferent magnetoplasmon excitation branches: three triplet
spin-density excitationgdenoted byw, andw,), and one

singlet charge-density excitatiddenoted byw,). In Fig. 4

we show the calculated dispersion energies of the charge

- mode, w,(q,), and the lowest energy triplet spin mode,
wgl)(qL_)O):EgN+ll_E8NT:wZ: (56) SN ; I _

N+1, N, w0+(qL), for a typical parallel magnetic fieldj=11 T at
filing factor v=6 and other system parameters chosen to
correspond to the experimental samplEhe most important

which reflects the generalized Kohn’s theor%?‘rﬁ_'.his shows  feature in the spectra is that there is an energy minimum
that the time-dependent Hartree-Fock approximation we apemagnetoroton” at a finite wave vectorq;‘~lgl, in the

ply in this paper is a current-conserving approximation to théspin mode dispersion along tiyedirection (perpendicular to
leading-order single electron wave functions and eigenenefye jn-plane magnetic field which is along tkexis), while
gies. From the numerical calculation presented in the nexty sych finite wave-vector minimum exists along theli-
section, such a generalized Kohn's theore#),(q, —0)  rection. Comparing with the zero width 2D resultgithout
=w,, is true also for Eq.(46), where the electron wave any in-plane fiel) obtained in Ref. 11, where a roton mini-
function is calculated self-consistently through EGO). mum is found in the spin mode alormpth directions, one
However, one should note that if one includes the largefinds that the finite width reduces the electron-hole binding
matrix size in Eq.(40) to go beyond the lowest order in energy[Eg. (36)], which is the origin of the roton minimum
(e%/ &gl )/ -, [see Fig. )], there is no such exact cancel- in the magnetic exciton picture, along the direction of the
lation, since some more diagrarttigher order in the inter- in-plane magnetic field(Note that for a ZWW system, the
action should be included in Fig. 2 in order to obtain the in-plane magnetic field does not change the electron orbital
current-conserving theory for collective modes in higher-wave functions and it simply increases the Zeeman energy
order calculations. only, which is proportional to the total magnetic figléirom

Equation(54) shows that in the long-wavelength limit, the
charge-density collective mode has the same energy as i
noninteracting resulfas it must,
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FIG. 6. Same as Fig. 5, but for spin moge (q,) dispersion. FIG. 7. Charge mode dispersion of magnetoplasmon excitation
+

of the same system as used in Fig. 4 but with different confinement
energywy at filling factor, v=6. Zero field well widths are about
the energetic point of view therefore this “softening” asso- 260, 200, 175, and 155 A, correspondingatg=7, 11, 15, and 19
ciated with the development of the roton minimuinans-  meV, respectively. The parallel magnetic field is 11 T for all results.
verse to the in-plane field directipimplies that the ground
state of such a quantum Hall system has a tendency to make

a transition from a uniform, unpolarized state to a spin-is exactly the same as the noninteracting energy separation,
density-wave state with broken translational and spin symg,,—1.72 meV, in Fig. 4, for results calculated in both the
metngs, paruculgrly ]f this roton minimum reaches zero en+jrst-order HF approximation and the SCHFA, within a 3%
ergy in some situations. In our calculation, the minimumpymerical error. As should be obvious from our results, there
energy of the spin modea(, ) goes to zero energy & s no qualitative difference whatsoever between the results in
=12.5 T. However, this value is close to, but slightly largerthese two approximations, which is not unexpected. There-
than, the critical in-plane magnetic fiel@ =11.1 meV, fore, from now on, we will only show results obtained in the
where the ground state makes the first-order spinfirst-order HF approximation, not only because of its compu-
polarization transition from a paramagnetie, € v|) to the tational simplicity (saving considerable time in numerical
spin-polarized statey = v, —2) (see Table)lin the Hartree- calculation$, but also because, as mentioned in Section
Fock approximation. Therefore within our HF approximation Il E, we believe that the leading-order HF calculation is re-
the roton-minimum of the spin mode dispersion does noglly more consistent with our TDHFA theory for the collec-
actually go to zero energy before the whole system undertive modes.

goes a first-order phase transition to a polarized ground state. In Figs. 5 and 6 we show, respectively, the charge and
Calculating the collective-mode energies forpalarized spin mode dispersions for=2, 4, 6, and 8 system by
ground state after level crossing, we find that this roton mini<hangingB, (total electron density is fixgdwith all other
mum energy does not vanish, and in fact, may even increaggarameters the same as in Fig. 4. The RPA peak is relatively
in magnitude. Therefore we do not observe a true mode softveaker in stronger perpendicular magnetic figdthallerv),
ening in the spin-density excitation in the present Hartreewhile it is more pronounced when more Landau levels are
Fock approximation although we see a clear tendency towardccupied(largerv). On the other hand, the energy difference
such a possibility within our HF theory. It is certainly pos- between the long-wavelength linfiivhich is just the nonin-
sible that a more sophisticated approximation going beyonteracting energy gap,, according to Eq(54)] and the roton
the HF approximation would produce such mode softeningninimum of the charge mode excitation is larger for smaller
(see the discussion in the following sectipniNote that the v (strongerB,) system. This indicates that the multiple ab-
charge collective-mode energy in the long-wavelength limitsorption peaks observed in the polarized inelastic light-
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ay (10% em™) FIG. 9. Charge mode magnetoplasmon dispersionsvfed,

B, =3 T, andwy=3 meV, calculated in the TDHFA. Solid, dotted,
FIG. 8. Same as Fig. 7, but for spin mode dispersion. and dashed lines are f8=20, 25, and 30 T, respectively, showing

a charge mode softening in direction, perpendicular to thg,

direction.(a) and(b) are for wave vectors alongandy directions,

scattering experimeftshould be separated more widely for ©SPECUVely.

smaller v (strongerB,). For the spin mode excitations
shown in Fig. 6, the results for different filling factors are

quite similar, except for their differerq; (i.e., the position fore the finite width effect also enhances the tendency of a

of the magnetoroton minimalue to different perpendicular charge'—densny-wave mstabﬂny against the ground state.
In Fig. 9 we show a typical singlet charge-density mag-

magnetic-field values. . . _
In Figs. 7 and 8 we show, respectively, the charge anéletoplasmon modex(,) dispersion ofv=1 as an example of

spin mode dispersions for—6 svstem but with different odd filling factors in TDHFA. Forv=1, there will be no
pin ISpers —5 system but wi ! first-order phase transition by Landau-level crossingry
confinement energyw,, as indicated in the figures. Larger

confinement energies indicate smaller well widths in the strength of in-plane magnetic field. Whe is more than 30
direction Thereforge we have a continuous “transition” from T, we find a charge-density-wave instability at a finite wave
th d'. : © two di X by i — vector perpendicular to the in-plane magnetic field. More
D e o e e, el arree Foc anaysis ows s COW s o
and 8 where the spectra in tkandy directions become very kind of isospin skyrmion stripe, which has a charge-density

similar for higher values ofv,, reproducing the zero width modulathn in thex-y plane as discussed in Sec. V.
(strictly 2D) resultst* On the g:[her hand, the roton minimum , S @ final remark, we note that Eq&9) and (40) are -

) ’ : based on TDHFA, which is exact only to the lowest order in
energy of thew,  mode decreases for weaker confinementy, . \ovis of interaction energy to noninteracting energy gap
potential (larger effective well width, showing more of a [(€?/ €l o)/ w,]. Therefore it isa priori not clear if this
tendency to have a spin-density-wave instability in a Widefleading-order many-body approximation can be used to
We” An.Other .important feature C<_’:1n be seen in the Charg%tudy the mode Softening phenomena near level CrOSSing,
mode dispersion. When the confinement potential is wealyhere the interaction energy is necessarily comparabierto
(.9., wo=7 meV), the energy of the rotonminimum is stronger thanthe noninteracting level separation since the
smaller than the mode energy in the long-wavelength limityoninteracting levels becomes degenerate at the critical
(g, =0). But the roton energy becomes larger than the longpoint. However, to the best of our knowledge, no other sys-
wavelength mode energy when the confinement potential ilematic reliable technique is available to calculate the
increased towy=19 meV, reproducing the results of the collective-mode energy and such a mode softening behavior
pure 2D system? where the roton minimum is typically at a was earlier successfully treated within the TDHFA in the
higher energy than the long-wavelength mode energy. Theresontext of the second-order phase transition related to the
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cussion, we will first show the results for a zero width well,
»&ﬁ 4 the system most theoretical researchers consider in the litera-
» ture, and then the screening results for the WWW system of
interest to us. It is shown below that for a ZWW, we can
(a) (b) obtain a “scalar”(not matrix dielectric function including
both RPA and ladder diagrams shown in Figc)2n TDHFA,
i.e., the screening effect in a ZWW is independent of the
T 4 level index within TDHFA. This result is valid beyond the
A¢ pure RPA result proposed before in Ref. 36 and should apply
even at low density, where only a few Landau levels are
(C) occupied, because of the inclusion of the ladder diagrams
(left out in Ref. 36. For a WWW, instead of using the com-

Sec. IV (see Fig. 2 The interaction lines of the dire¢Hartree - S . . L
energy and the RPA diagrams are not screened to avoid doublg9'on: which in some sense is effectively similar to a ZWW

counting.(c) A diagram not included in the screened TDHFA but of system a§ meqtloned !n Sec. Il A. An g\nalytlcal expression
the same order as a screened ladder diagram showh)imll  for the dielectric function can be obtained when only the
notations are the same as those in Fig. 2. RPA screening is consideregheglecting ladder diagrams
and is a good approximation for high-density systems. Note
that these general formulas of screening effects could be
used to study other interaction-induced electronic properties
of quantum Hall systen&3"and are therefore of broad gen-
canted antiferromagnetic phase of a double layer system iaral interest in quantum Hall problems transcending the spe-
the presence of interlayer tunneling and Zeeman splitting.cific applications we are dealing with in this paper.
Therefore we believe our results should be qualitatively valid
in the level crossing regime. We do not, however, exclude
the possibility that correctly including higher-order interac-
tion effects may very well reduce the roton-minimum-energy
zero at a finite wave vector before the system undergoes a For a strictly 2D ZWW one can neglect tlredegree of
first-order phase transition to a polarized ground state. We dfreedom completely, and therefore the interaction matrix el-
not know how to go beyonbd the TDIHFAhin a S{}Stem?ticlement of Eqs(20) and(31) can be simplified to the product
current-conserving manner but speculate that such a calcu i i 2 (a):
tion may very well give rise to a finite wave-vector softening 8f Coulomb interaction and the functiok,n,(q):
of the magnetoroton producing a quantum phase transition to
the symmetry-broken phase. Our speculation is partly based
on our finding that TDHFA actually predicts such a transition

atBy=Bj which happens to be sightly larger than the critical 2D ~ .\ 2D,> \A2D - op =
field for the first-order transition. n1"4?"z”3(qi)_v (QL)Anlnzx(_QL)Anz”g(qi)

A. Screening in a zero width well

=V2P(q)AZE ()AZD, (a), (57)

nln4 n2n3
IV. SCREENING EFFECTS

In the TDHFA shown in the previous sections, electron- oDy v 2 \—1 R ,
electron interaction is the bare Coulomb interaction withoutVhere V="(a,)=(2mlgL,)~"fdq,V(a, .q,) is the two-
taking into account screening effects from the electron-holelimensional Coulomb interaction amﬂj(qi)zAﬁ:ﬂj(q) is
fluctuanons in the_Landau Ie\_/els. In this section, we Will gptained by using the standard Landau-level 2D single-
incorporate screening effects in our magnetoplasmon calCysayticle wave functionri a n integral similar to Eq21). Its
lations. Actually, in Egs(39) and (40), a complete formula oy it formula can be obtained by taking the zero width
for the dielectric function in TDHFA has been given, but this = " 0 (N .
formula is in general too complicated to be widely used in arlMit (wo— ) of the functionAn/;, (q) in Appendix C. Note
integer quantum Hall system. In this section we will derivethat in such a pure 2D system, electron wave functions ob-
some convenient formulas for the dielectric functieig,»)  tained by SCHFA are exactly the same as the noninteracting
in different reasonable limits. Including such screening efWave functions, so that the results in the SCHFA and in the
fects in the bare Coulomb interaction one may study thdirst-order HFA are the same in this case. We use the super-
magnetoplasmon excitations beyond the time-dependeCript, “2D” to denote pure two-dimensional quantities in
Hartree-Fock approximation, where the interaction used irthe zero well width limit, and replacg, by its absolute
the Green’s function and vertex function is the unscreenedalueqin Eq. (57) due to the rotational symmetry in thxey
one[see Figs. 2 and 18 and(b)]. For convenience of dis- plane in the 2D limit.
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Applying Eq. (57) to Egs.(38) and(39), one obtains im-
mediately e®(w,9)={ 1-V*(q) 2 Amﬂm (a)

-1
. x E [Yoomg mm, (@] AP (@]
n1n4,n2n3

(0,9)
(59
=Uin, mng(@.0)[ 1=VZP(a) > AP, (q)

Mfla:N2Nls MMy and the corresponding irreducible polarizabilliZ° (w,q)
can be eaS|Iy obtained by usinge’®(w,q)=1
—VZD(q)H,"(w q). Note that when the spin degree of
X > [Y%Dmﬁ m,m,(@.Q)]" l'A\Zm[imv(cl) , (58 freedom is considered in Eq59), all electron-hole pair
My fluctuations involved ine?®(w,q) should be non-spin-flip
pairs because Coulomb interaction does not flip electron
spin.

It is instructive to study the forms for the dielectric func-
where the matrixY?®(w,q) is of the same form a¥(w,q)  tion in some special limits. First, in the low-frequency re-
in EqQ. (40), but now with two-dimensional interaction gion, where only fluctuations likeN,|)—(N+1,]) and
matrix elements. The dielectric function for a ZWW system(N, T)—(N+1,T) are relevant, we can use the<2 matrix
is therefore a scalar function and independent of the levedf Y (w,q) in Eq. (42) to express the dielectric function in
index: the lowest order of &%/ €gl o)/ wy:

-1
e’ (0—00)~ (1 v”(q)lANNH(q)IZiEj [Yﬁ?(w,qnl)

2V2°(q)|AZDy  1(a)[? o

:(1_ wiD(q)-i-ia)
AErl\llr\]%fDl_ Urt\’llr(l],dr\'lerDlN+1(Q)+2U N?\l+1,N+lN(q)+ iw

~ 2D Lo
w,,z(q)+|w

(60)

where we have used the fact theE! 1?2 = AE| 22 for systems with even filling factors in the unpolarized ground state.

Another good approximation for the dielectric function of E8P) can be obtained in the high-density limit, where it is well
known that the contribution of RPA diagrams dominates that of ladder diagrams in the correlation’®S¢agyng from Egs.
(33) and(34) and using iterations with Eq57) to represenWm mg.m,m, (g), which is now the same asﬁqjmﬂvmvm#(q), we

have

U2D (q,w)~ Un1

(@ +URT, npng(@ 2 Ul (D (@)
m,Mg

Ny,NoNg Ny, n2n3

2 2 2 2
Unan4 nong q)mE UmDmB mBma(q)DmDmB(w) ' mzm Uzm[imv;mymﬂ(q)Dmlimv(w)—'_ e
o w'

-1
_Uﬁan4 nyng q) 1- 2 Um «Mg iMgMm,, (Q) m mB(w) . (61)
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After retrieving the spin index, we obtain B. Screening in a wide quantum well

For a WWW (specifically a parabolic WWW for our cal-
culations, Egs.(39) and (40) show that the dielectric func-
2D _ 2D 2D tion is a matrix function strongly dependent on the level
ekpal@. @) =1~ > Uf mgimgm, (@) Dinm, (@) index of the interaction matrix element. In general, these
expressions are not convenient for applications in different
=1+V2°(q) physical problems, and therefore we have to look for a good
approximation for Eq(39). First we could get a good low-
. frequency approximation for the dielectric function by trun-
» 2" D 2(En o= Emo) 01 cating the matrix size of Eq39) into 2X 2 and applyingY,,
5 120 n=R+1 (B, g— Epy o) 2+ 2 of Eq. (42), i.e., considering electron-hole fluctuafuons only
' ’ between the two nearest levels about the Fermi level. The
result is similar to Eq(60):

mamﬁ

2|2 n—-m 2|2 2
&) - Lpn_m(%) |

(62) . e (q)tie
5N,N+1(‘0—’Oach)“’%,
woz(qL)+|w

(63

which is the same as the result in Ref. @8ing the identity:
L, () =(—1)"[n!/(n+m)! ]x™L(x)), if we neglect the
self-energy correction in the single-particle enegy [so Wherewoz(i) and wp((i) are given by Eqs(45) and (46),

thatE, ,= E?]U,,,=(n(,+ 1/2)w, —ow,]. Note that the RPA  respectively. The difference between EG0) for a ZWW
result shown in Eq(62) includes the dressed single-particle system and Eq(63) for a WWW system is that the former
Green’s function via the Fock self-energy correlatigthe  can be used for interaction between electrons in any Landau
Hartree term is cancelgdbut it sums over all empty and levels, while the latter is correct only for electrons interacting
filled levels and is therefore actually beyond the validity between(N,T(])) and(N+1,1(])) levels in the low-energy
range of TDHFA which neglects multiexciton effects. Both region of an unpolarized ground state. When considering
Egs.(59) and(62) above are independent of the paraliet higher energy excitation, say electrons frdfn-2 level to
plang magnetic field in the strict 2D limit, since the parallel level N+ 1, a larger matrix representation for thg matrix
magnetic field only affects the Zeeman energy in the strichas to be used to get a self-consistent result, but it may
2D limit (and not any aspects of the orbital motiorlow-  exceed the validity region of TDHFA. It is instructive to
ever, the parallel field does, as expected, affect the dielectricheck the asymptotic approximation of E§3) in the static

function in a finite width well as shown below. long-wavelength limit by using Eq$45), (46), and(54):
> w2+EH51_EHF_Uai“,dN+lN+1(dJ_‘>0)+2UNN+1,N+1N(&L‘>O) w2
6N,N+1(01Ch—>0)—> HE HE bind - = H H>1' (64)
w2+ 251~ 2N —URNn+ v+ (A —0) Wyt N1~ 2N

As in the ZWW, a scalar dielectric function similar to Eq.
Note thateN,NH(O,(*)) does not go to unity because of the (59) can be obtained for a WWW system subject to a strong
finite direct (Hartree self-energy term, showing a 3D prop- in-plane magnetic field. The similarity between these two
erty. In a ZWW, however, the Hartree self-energy is a con-Systems is because the strong in-plane magnetic field effec-
stant independent of the level index, and therefore is carlively enhances the electron confinement energy of the well
celed with each other in Eq64). When taking the large (NOte thatw,= w3+ wf and see Sec. Il A We start from

L ~ - the following general approximatioiwe use number labels
momentum limit (0] =), enn+1(00,) =1 for w,(a)) (e.g., 1,2-~)ge?nd Greekplgbel(ae.g.,oc[r,,& --) to replace the
—w,(q,)—0. level indicesny ... andm, 4. .. for simplicity]:
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Ussap(@)U uy23(q1) whereC2%(q, ,q,,q;) has been approximated by its zeroth-
order value
1 > ’ - ’ > ’
= E Z Au(—q.,—q9)V(q, ,qz)Aaﬁ(‘h »q7)
z q,

. NU(E A C23(d.,0;.05)~1+0(w, [wy), (66)
XE” AW(_‘M,_%)V(‘A »9:)A2(q, ,97) AL G929 b
4,
1 . . . according to the explicit expression Agﬁ(ﬁ) shown in Ap-
=— 2 Awl(—q.,—q)V(q. ,q))Ax(q. .q)) pendix C. Therefore the TDHFA screening similar to Eq.
Lz 4 (59 for a WWW system could be obtained approximately as

X E A,u,v(_qL ,_LI;,)V(LIL ,LI;,)AaB(CIL ,qg)
%
-1

A23(‘;L,q;,) Aaﬁ((';L,qz’) S(wﬁi)’v 1_;6 % [Yaﬂ,/w(w’ai)]iluﬂv,aﬁ(ai)

An(q1.9)) Aup(qy ,q7) (67)

23 >
=CplayL .q, .4}

. . Similarly the high-density approximation with RPA diagrams
~U143(q 1)U 4y0p(q.)s (65) only can also be obtained by using the same approximation:

2( En,a'_ Em,a) w2

- 1 1 m!
SRPA(w-qJ_)~1+2 L_Ez V(Qx’quz)m

wly ¢ m=0 n=No+1 (E; y—Emo)2wi+w? Lz
cog 0(ayl )2+ (coshyl o—sin Op,l o) 2\ SirfA(ayl o) 2+ (Sin 60yl o+ cosdp,l o) 2\3
X exp — TN expg — TN
1 2

SiPO(dyl o)+ (sin B0l o+ cosop )23\ "M [ sinf6(qyl o)+ (sin fayl o+ cosop,le)®A3| ]
x 2%, Lm 2%, '
(68)

Comparing results of Eq62) for a ZWW and Eq(68) fora  (68) and consider static screeningg€0) only. Therefore
wide (parabolig well, we find that the finite width effect the algebraic matrix equations of Eq88)—(40) are all of
enhances the anisotropy of the dielectric function through thene same form except the Coulomb interaction is replaced by
coupling ofx and z components of wave vectors. Note that the screened one/(q)/erpa(d,,0). However, the interac-
Eqs.(63), (67), and(68) show no screening in thedirection  ion of the RPA energy in Eq(37) and the Hartree self-
because we have integrated out #@omponent in the inter-  apergy are not screened in order to avoid double counting of
action matrix element by the single-particle wave functionsy pple diagramgsee Figs. 1&) and(b)]. We note that such

in Eq. (20) and have assumed the level index dependence Qfreened TDHFA isiota strictly current-conserving approxi-
the_ dielectric fun_cnon to be ummportq[ﬂee Eq.(66)].'We mation, because some other diagrdifos example, see Fig.
believe _tha} this is a good apprOX|mat|on.for strong |n-.planelo(c)] are not included, which may contribute to the same
magnetic fields(see Fig. 1 so that there is no appreciable higher-order effects as the screening bubbles. Therefore we
static or dynamical polarization in thedirection to screen 5, only estimate the screening effect to the magnetoplas-

the Coulomb interaction. This.ap.proximation certainly fails ;,on energy qualitatively rather than quantitatively in our
when one wants to study excitations between levels of tW(bresent stud$?

different subbands in a weak in-plane field region. In the presence of screening, the first-order phase transi-
tion pointBﬁ* moves higher valuesee the fourth column of
Table ) because the exchange interaction strength is re-
In this section, we show some numerical results of theduced. This allows us to investigate the magnetoplasmon
collective-mode energies including the screening effect. Fomode dispersion at higher values of in-plane magnetic field

convenience, we choose the dielectric function shown in Eqwithout changing the ground-state configuratiae., avoid-

C. Numerical results
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e(q,w=0)
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g (10%° em™)

FIG. 11. Static dielectric function in momentum space for
v=6 and wg=7 meV. Solid and dashed lines represent
€(0y,9,=0) and e(q,=0,,), respectively. Thick and thin lines
are forBj=11and 8 T.

E (meV)

ing the trivial first-order transition In Fig. 11 we show the

static dielectric functiorr:(wzo,ﬁl) obtained by Eq(68) in
RPA for two different values of in-plane magnetic field at
v=6. For a stronger in-plane field, the screening effect is
also stronger and more anisotropic. The anisotropic dielectric
function shows that interaction along thelirection(parallel

to the in-plane field is screened more than the interaction
along they direction (perpendicular to the in-plane figld

FIG. 12. Dispersions of magnetoplasmon excitations/fei6 in
both charge §) and spin ¢, ) modes including RPA screenifgq.

In Fig. 12 we show calculational results of the charge . .
. . . .~ (68)] of the Coulomb interaction foB =11 and 12 T(dashed and
(a)p) and spin @‘U) mode magnetoplasmon dispersions in solid lines, respective)y Results of unscreened dispersion are also

cluding RPA screening effectslashed lineswith other pa-  shown(dotted lines, the same as Fig. #ér comparison.
rameters the same as Fig. 4. For comparison, the unscreened
results (dotted line$ and the screened results with hlghertherefore indicate that inclusion of screening effect, as well

in-plane magnetic fielésolid lineg are shown together in the as, lowering the confinement potential and increasing the
same figure. Comparing unscreened and screened results Ellt . o ) :
X . ) electron density, could help to stabilize a new anisotropic

Bj=11 T (dotted and dashed lines respectiyene can find d ) . X

. round state with broken translational and spin symmetries
that the screening effect does lower magnetoaplasmon EN€ssociated with the softening of the spin collective mode.
gies for both charge and spin modes in the ldmd region  gych a symmetry-broken phase may very well be the cause
due to the shrinking of Fock self-energy. But this effect isgq, transport anisotropy observed in Ref. 7.
relatively weaker in the long-wavelength limismall |q, |
limit) due to the cancellation between the Fock self-energy

and the electron-hole binding energ@kie generalized Kohn’s V. DISCUSSION

theorem. In the intermediatéq, | region, the roton mini- In this section, we briefly discuss the possible phases of
mum becomeS |eSS prominent than the unSCI‘eened result, aﬂ'qs new ground state based on our COnective-mode Ca'cu|a_
the dispersion becomes flat. Therefore, fixing all the othefjon results shown above. More detailed theoretical results on
system parameters, the screening effect is not very importafhese exotic quantum phases will be given elsewfegmi-

in determining the roton-minimum energy. On the other|ar to a DQW syster’ where the layer index is treated as an
hand, as mentioned above, the screening effect reduces thgyspin degree of freedom, the level index of the closest two
electron self-energy and increases the critical valuBjdbr  |evels around the Fermi level can be used to construct an
the unpolarized-to-polarized first-order phase transitionjsospin (here it is also one-to-one related to a real $pin
Therefore one can, in the presence of screening, calculate thgace, and create a coherent wave function for the possible

screened collective mode at higher in-plane magnetic fielghew ground state in a single Slater determinant,
based on the same unpolarized ground state since the first-

order transition is now pushed to higher fields. In Fig. 12 we
show the result of magnetoplasmon dispersion calculated at v >=H e”‘Qx'gco
Bj=12 T (solid lineg. The roton minimum of the spin col- ! K

lective mode ¢ ) becomes lower than 0.1 meV, showing an
almost mode softening at finite wave vector along the direc-
tion perpendicular to the in-plane magnetic field. Our results

Wy +
S?CN,k—lez,i

. W
—ikQul2qi K 1
+e K OSINS N+ 1k+Qy2,1 |0), (69
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Wherecﬁyk’s creates an electron in Staml,k,s(l:)) with Spin S, that the Stripe formation, if |t exists, should .be. .alon.g the
and |0) denotes the ground state with+1 filled Landau direction perpendmulgr to the m—pla_ne magnetic figld., its
levels of spin up andl levels of spin down. We consider six normal wave vector is in the direction to produce such a-
different phases constructed from E§9), corresponding to transport anisotropy. Using the above result that the spin-

. L N . density modulation has a wave vectyy in they direction,
different variational parameterg, andQ. Whenw, is con- y ay y

. ) we find that only the skyrmion stripe phase is consistent with
stant, the wave function of E469) can describe three non- y Y pe P

: i : ) all of these constraints and should be the best candidate for
stripe phasesi) a fully (un)polarized uniform quantum Hall e ey ground state. Although our Hartree-Fock calculation

phaées fom, = (0)m, (ii) a simple interlevel coherent phase gnows that the spiral phase has slightly lower energy than the
for Q=0 andw,# 0,7, and(iii) a spiral phase for finit€ skyrmion stripe phas#,we believe that this may be due to
and wy# 0,7. Whenw, changes periodically witlk, three  the nonparabolicity of a realistic WWW or the correlation
different kinds of stripe phases arig@: simple stripe phase effects not included in our HF approximation. We therefore
for Q=0, which has no spiral structuréij) skyrmion stripe ~ Speculate that the gnisotropic gro.und state obs_erved in Ref. 7
phase for finiteQ, butQ.L n, wheren is the normal vector of is our proposed spin skyrmion stripe phase. This may also be
the stripe formation. Such a skyrmion stripe phase has bot ue for the transport amsotro_py earlier qbse_f\?enh Si
charge and spin modulation in different directions, and there- ased 2D systems, but the addlthnal_compllcatmns of valley
fore has finite topological charge-density oscillation in realdegeneracy in Si makes the application of our theory mode

space?’ 5% (jii) spiral stripe phase for finit® with Q| n. different.

This spiral stripe phase has charge and spin modulation in

the same direction but no topological charge oscillation in VI. SUMMARY
real space. We should point out that the wave function of Eq.

(69) is based on a special choice of Landau gaude,
=(0B,x—Byz,0), and therefore gives the stripe direction

We study the magnetoplasmon excitations of a parabolic
guantum well system in a tilted magnetic field. Starting from

| . dicular to the in-ol ic field the many-body theory in coordinate space, we integrate out
aiongy, 1.e., perpendicuiar 1o the in-plané magnetic 1i€ld. o ontinyous variable and obtain an algebraic matrix rep-

Choosing another kind of Larldau gauge, where electron M%esentation of the dielectric function and hence the magneto-
mentum is conserved along A=(—B,y,—B;z,0), we can  plasmon mode dispersion in TDHFA. Focusing on even fill-
construct a stripe along direction and the noninteracting ing factors, a roton minimum near zero energy in the spin
Hamiltonian can be solved exactly by a canonicalchannel is observed at finite wave vector along the direction
transformationo’.s Then one can Wl’ite the tl’ial wave funCtiOI’lS perpendicu'ar to the in_p'ane magnetic field. By Changing the
of these different phases and obtain their energies in Hartregpnfinement potential, we have a continuous transition from
Fock approximation. The one of the lowest energy stateg 3p plasmon excitation to the pure 2D results in our calcu-
should be the ground state near the degeneracy pBjnt, |ation. Including the screening effect, which is another im-
=B . Details will be presented elsewhe¥e. portant part of our work, we find that the roton-minimum
On the other hand, the magnetoplasmon excitation specti@gnergy could be even more suppressed. Although it does not
we obtain in previous sections also gives us important inforreach zero energy before possibly undergoing a first-order
mation about the new ground state near the degeneraghase transition from an unpolarized ground state to a polar-
point. First, the asymmetry of spin-density modexiandy  ized one, its small excitation energy at finite wave vector
direction and the near mode softeningyiirection(shown  suggests a possible spin-density instability to an exotic
in Fig. 4) strongly indicate that the new symmetry-broken symmetry-broken ground state in realistic systems. We dis-
ground state, if it exists, should have a spin spiral structure atuss various phases that may result and propose that the re-
finite wave vector iy direction. This may be a spiral spin- cent transport anisotropy measurement in experime#s
density wave, when only one of the ordering wave vectorspe explained by a skyrmion stripe phase, where spin- and
+(0,4y) is present, or a collinear spin density wave, whencharge-density modulations are in different directions. The
there is ordering at both wave vectors with equal amplitudestheoretical technique used in this paper could also be used to
The former can be visualized as a spin-density wave wherstudy other quantum Hall systems in quasi-2D quantum well
electron spin has a spiral structure around the total magnetiganostructures. In particular, our screening theory is more
field direction in order to optimize the exchange energy.complete than the existing theory, and should have wide ap-
Therefore collinear spin-density wave, spiral, skyrmionplicability. Finally we point out that our predicted collective-
stripe, and spiral stripe phases are the possible candidates fmode dispersion may be directly verified via the inelastic
the symmetry-broken phase. As for the existence of any podight-scattering spectroscopy.
sible charge-density wave instability, we could not obtain
much information from our collective-mode calculation in
TDHFA. But it is apparently true that interaction effects are
more important for stronger in-plane magnetic fields, where This work was supported by the NSF-DM@E.D. and
the noninteracting energy separatiop becomes very small. B.I.H), US-ONR(D.W.W. and S.D.S, and the Harvard So-
Considering the experimental resultsyhere the resis- ciety of Fellows(E.D.). We acknowledge useful discussions
tance along the in-plane magnetic field becomes finite whewith C. Kallin, S. Kivelson, A. Lopatnikova, A. MacDonald,
the in-plane magnetic field exceeds a critical value, we find. Martin, C. Nayak, L. Radzihovsky, and S. Simon.
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APPENDIX A: SELF-CONSISTENT HARTREE-FOCK EQUATIONS
In this section we derive the self-consistent Hartree-Fock equations for the single-particle wave functions. Starting from Eq.
(10), we can use a Fourier transform str) to obtain

Eﬁ,<r¢ﬁ,k,o(F): E V(q 2 Vmpsf dl’ e a-r’ d’mps (I‘ )d’mps( e |qr

m,p,s

X ko) = g Z V(q)f dr'e a7 ¢a,k,(r(r’)Z Vinp,oBinp,o (F)€9 i o(F)

Ho+—2 V(Q) D vy o8 O WRHOAY (G| by ()
q m,p,s
1 x i(p+ay/2algAT T 3y @id-T -
—5% vm% Vinp,o Ok p,a,€ P T YIHOAL LA b (), (A1)

where the form functiom‘f"f(ﬁ) has been defined in Eq. to conserve the total electron density. . _
(21). Assuming a uniform ground state, we can separate Now we expand®; ,(x,z) in terms of noninteracting

(1) into a product of a plane wave/\L,, and the ~WaV€ functions with the same sgfinote thatv(r) allows no
,:ﬁ?]lém()n) d (XELHO 2), Whlgh satisfies the following ei- spin flip, so thato is conserved and no spin hybridization
genvalue equation: occurg:

Eno®r o(X,2) CDEYU(X,Z)=<X,Z|E,O'>=Z (x,2lm,0)o o{m,o|n, o), (A4)

where|- - - ), represents a noninteracting eigenstate. We have

=|Ho+ > V(@) X v ALY (G,) €97

23, ‘@ e

Arﬁ‘g(a):f dxf dz e—iQxX—inZcbfﬁ’U(x—qy|§/2,z)

1 - i oo, >
XPf ,(x,2)~ 5 % V(Q)Zn; Vi € HYEATN(Q) X Dy, (x+0y12122)

Xeiqxx+iquq)rﬁ’o_(X_qy|2yz)’ (AZ) _E z <m O'||l,0'>0 0<|2’0_|n 0'>A(O) O'O'(q)
where vy; ,, is the filling factor of Landau levein and spin T2
o, satisfying (A5)
Using Eq.(A5) and multiplying by the noninteracting wave
V:E Vi o (A3) function from the left of Eq.(A2), we have the self-

consistent Hartree-Fock equation in a matrix representation:

E V(qz) E/ VI’;‘I,U'/

ar OLZ qz

Ervo(n',oln,o)= E Srr v+

m/

XE Z <m (o ||1,(T >00<|2 o |m o >A(O)‘7 o (qZ)A(O)O'O'(

aome (—0z) olm’,aln,a)
I I

—E E V<q>2 Vo2 E (M,a|T1,0)0o(m" )AL S (DAL (= Q) ol T, 0], o)

Iy

:Z E%, n’ m/+ 2 Vma' 2 E <m (o ||1,0’ >00<|2, ’|I’ﬁ,o">
m’ m,o’ I
X QU (0 =USP(6,)8, 00} | oMol 0), (AB)
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where we have used Eq&0) and(51) to express the direct tion discussed in this papecan be written in a simple and

and the exchange potential. Equati@®) is the matrix rep- instructive form by using exciton wave functions proposed in
resentation of the Hartree-Fock Hamiltonian in our systemRef. 11 and its appropriate WWW generalization constructed
which should be solved self-consistently to get the energyn our Eq.(18), respectively. For the first case, we take the
eigenstate via vector elemengém, a|n, o). static exciton wave function suggested by Kallin and Halp-

Another expression for the eigenenergies can be obtainegfin in EQ.(2.9) of Ref. 11 and set the center- of-mass coor-
directly from Eq. (A2), by integrating another eigenket dinate and the total momentum of excitons to be zero:
®; ,(x,2) from the left. We obtain

) 2
‘I’ﬁ;’,na(Ax.Ay)Ef dre 170y O+ Ax/2)

SV(A) Y e ALY ()

E;o=E>
2ml2L, G i X (p—AxI2), (B1)

n,o N
oo 1 - where Ax and Ay are the relative coordinates between the
XA (=G~ q > V(a) hole in a filled level(denoted byn,=n) and the electron in
a an empty level(denoted byng=n,+m); 4{(x) is the
%S v ATUGHAZ(— ) wave functi_on of one—dimensional single harmonic oscillator
= Mot mn nm ' as shown in Eq(8) with I; replaced byl,. In the lowest
order of €%/ €l)/w, , there are four distinct contributions to
=E» + 2 v U ) the magnetoplasmon. excitqtio_n energies: noninteracting en-
ma"1=n,n; mm ergy separation, exciton binding energy, RPA energy, and
exchange self-enerdy,

bind, mr
-U:-- ‘QOL)éa'(T} (A7)
e anDn,J(Q) Mo, —w (0= 0,)+AEging(q) + AERpA(Q)
whereU* - - -(0,) and Ug';}dﬂ‘:‘;(ol) are those defined in T AET (B2)
Egs.(36) and (37). exen:

Using this self-consistent Hartree-Fock equation, Eqwhere the last three terms can be re-expressed in terms of
(AB), it is also easy to include any nonparabolic effects of the’*lfﬁDyn as follows:
realistic confinement potentiél (z). Assuming the deviation ‘
of the realisticU(z) from a parabolic onelJ(z), to be 1 . o
small, i.e.,|AU(2)=U(z) —U,(2)|<wo, we can calculate AEfng(a) = 2f dAr, V?P(Ar—I2q, X2)
its matrix element, 27lg

<ﬁ',0’|AU(Z)|n:|’,a'> |qfﬁ?rmn AFL)|2 (BS)
2v*°(q)
:deJ dz®;/(x,2)AU(2) P (X,2) AERD (q)= ——— o2 K% +mn( qy|0 9, 0)|z (B4)
0
fdxf dz®;.(x,.2)| E AU(q,) €9 |7 (x,2) 1 i i
L % exch 2n+m Erﬁsz dAI‘lVZD(AI’l)
0

1 .
= 2 AU(@)AG(0,,—a,)

ZqZ

*Ifz'imnmmu) 2 WD*(Ar))
98

1 -
=—f daAU(A)Aqm (0L, —0y). (A8)
2m 2D 2D% (A 7
—WanAr) E WwiPr(Ar)|, (8D

and incorporate it in EqLA6) to calculate the self-consistent
Hartree-Fock eigenenergies and eigenfunctions. In all Ou\yvhereN is the level index of the highest occupied Lan-
numerical work presented in this paper, however, we have
takenU(2) to be parabolic throughout. dau Ievel Wlth Splﬂa’a(ﬁ) Interpretation of the formulas in

Egs. (B3) and (B4) is straightforward. The binding energy
integrates over relative positions of electron and hole in the
exciton, whereas the RPA term involves electron and hole
annihilating each other and is proportional to the probability
of finding two particles at the same positiahE]},;, in Eq.

In this section we show that the magnetoplasmon excita(B5) is the difference of exchange self-energies between the
tion energies both in a thin 2IZWW) well in only a per- two relevant levels, and indicates the relative many-body
pendicular magnetic fieltsituation discussed in Ref. land  level shift. The exchange self-energy of level 3, ex-
in a wide parabolic well with a tilted magnetic fielditua- pressed in Eq(B5) can be understood as the integral over

APPENDIX B: MAGNETOPLASMON EXCITATION
ENERGY THROUGH THE MAGNETIC EXCITON
WAVE FUNCTION
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relative positions of electrons between lemednd the lower equations is similar to the zero width situation, except for an
levels| of the same spin. Note that?>(q, =0)=mw, for  extra integration over coordinates.
m=1 in the charge mode channel satisfying Kohn's Note that Eqs(B7)—(B10) can be transformed to the mo-
theorenf! for this ZWW system. The equivalence betweenMentum space by using tiRefunction defined in Eq(21):
above expressions and the results in Ref. 10 can be easily
seen by direct substitution. . o

For a parabolic well, the magnetoplasmon energy ex- A,;ﬂ,;a(q)=f dxf dze"qxx"qzzd>r;ﬂ(x—quS/Z,z)
pressed by the magnetic exciton wave funcfisee Eq(18)]

can be obtained by using similar notations as ab(d:@/eﬁa X(Dﬁa(x+ qyl %/2,2)
=n and ng=n+m to denote the hole and electron level
indices: :f dze 97y, o (—ayl5,04d5.2,0), (BLY)

w AES,+AE +AE +AED
mn p(qL) ap blnd(qj_) RPA(qJ_) exch so that we obtain

+AEd|rectv (86)

0 _ _ _ . . - -
whgreAEaﬁ—mller Myw,— w,(0z—0,) is the noninter- AEbmw?d(ql) o 2 cog (pyay— pqu)lg]V(p)
acting energy gap between the two levels, and p

. XAL (A5 (P),

mn, > 1 >, > 0> o~ BB o

AE, ()=~ Y. dArV(Ar—1gq, X2)
0
2 AEDHG)= o S U )
< | 42w, 5 (Axay.zaal, @) RPAU) T G ia, P

) X|Aq 5, (G Gy P22,
AR (d,)= P f dATV(AT)e!@dxtaydy)
0

1o .
2 12 AEL= 5 S V(p)[Z A5 (P)?
x | dzw;, ;5 (~a3,043.2+A2/2,0) ; P

XWE G (- a)l5,ad5,2-4212,0),  (BY) -2 |Araa<5>|2}
AE™e = _1JdAFV(AF)de{\P* - (Ax,Ay,Z,A2)
exch 2 Ng,n ) L,
2o o A o 2 2 VPIATPY
2712 okz P,
X2 VT (AxAy.Z,A2) X[Ai i (P)=Ai i (P, (B12
s
_\Ifﬁa’ﬁa(AX,Ay,Z,AZ) which are identical to the results we have derived before in

Sec. Il E by noting thatA*-(q) =Asa(— ).

xZ Wi 7 (Ax,Ay,Z,A7)|, (B9)

APPENDIX C: ANALYTICAL EXPRESSION FOR

A(O) oo’ ( )
AE™s — 2 [ aarviaxayanS [ dze: 00 et
direct_ ﬁ r ( X! yy Z) - |,| ( 1Y (O) U_O_
o I The explicit formula for the functior\ g (q) we use
Z—Az/2,0)[¥; (0,0Z+Az/2,0) in this paper can be evaluated by usmg the known math-
prp ematical properties of the generalized Laguerre polynomial.
—‘Pﬁa’ﬁa(0,0Z-FAZ/Z,O)], (B10) Since it is defined by the noninteracting wave functions,

which are not dependent on the spin index explicitly, we can
where the summation ovér means the summation over all heglect the spin index totally here and calculate the orbital
occupied levels with quantum numbef; (,), and summa- integer directly from Eq(47). Using Egs.(7) and (8), we

tion overla(ﬁ) is the summation of all occupied levels with obtain the following results[for convenience, letn,,
the same spin as the statg s . The interpretation of these =(n,,n/) and nﬂ (ng.np)l:
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C

AO). (6)= \/naﬁ,min! _ NG min' "XF{— 00329(Qy|0)2+(COS@qX|o_5in9qZ|o)2)\§

N Ng naﬁ,max! nz,yﬁ,ma)(! 4)\1
Sir?0(qyl 0)?+ (sin B0yl g+ cos0a,l o) *\3
exp —
4x,
o Fcosf(qylo) —i(cosfaylg—sinfg,lg) A, Map +sinf(qyle) —i(sinfag,lo+cosfq,lo)\, Map
V2N, 2\,
LM (co§e(qy|o)2+(cosaqx|o—sinaqz|o)2>\§ g Sir?0(qyl )2+ (sin B0yl o+ cos6a, 0)*\ 3
r"ozﬁ,min 2)\1 n:xﬁ,min 2)\2 ,

(C1
where * is the sign ofn!)—n{) for each bracket ana’,) irmay=Min(Max){n{),n{}, and m&)=|n{)—n)|. A,

=(I12/15)? are dimensionless parametel$\(x) is the generalized Laguerre polynomial.
As for a ZWW, we can letwy— o0 and obtain

. No g min! a?13]{ =qylo—igylo| g2
Aron,(00)= ﬁex;{—f % L =), (c2)

whereq= |ﬁi|, andz component has been integrated out. All notations are the same as (@ Babove.
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