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Magnetoplasmon excitations and spin density instabilities in an integer quantum Hall system
with a tilted magnetic field

Daw-Wei Wang,1 S. Das Sarma,1 Eugene Demler,2 and Bertrand I. Halperin2
1Condensed Matter Theory Group, Department of Physics, University of Maryland, College Park, Maryland 20770

2Physics Department, Harvard University, Cambridge, Massachusetts 02138
~Received 24 July 2002; published 27 November 2002!

We study the magnetoplasmon collective-mode excitations of integer quantum Hall systems in a paraboli-
cally confined quantum well nanostructure in the presence of a tilted magnetic field by using the time-
dependent Hartree-Fock approximation. For even integer filling, we find that the dispersion of a spin density
mode has a magnetoroton minimum at finite wave vectors, at a few times 106 cm21 for parallel fields of order
1–10 T,only in the direction perpendicular to the in-plane magnetic field, while the mode energy increases
monotonously with wave vector parallel to the in-plane magnetic field. When the in-plane magnetic field is
strong enough~well above 10 T!,we speculate that this roton minimum may reach zero energy, suggesting a
possible second-order phase transition to a state with broken translational and spin symmetries. We discuss the
possibility for observing such parallel field-induced quantum phase transitions. We also derive an expression
for the dielectric function within the time-dependent Hartree-Fock approximation and include screening effects
in our magnetoplasmon calculation. We discuss several exotic symmetry-broken phases that may be stable in
finite parallel fields, and propose that the transport anisotropy, observed recently in parallel field experiments,
may be due to the formation of a skyrmion stripe phase predicted in our theory. Our predicted anisotropic finite
wave-vector suppression, perhaps even a mode softening leading to the quantum phase transition to the
anisotropic phase, in the collective spin excitation mode of the wide well system in the direction transverse to
the applied parallel magnetic field should be directly experimentally observable via the inelastic light-scattering
spectroscopy.

DOI: 10.1103/PhysRevB.66.195334 PACS number~s!: 73.43.Nq, 73.43.Lp, 73.43.Cd
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I. INTRODUCTION

Observations of integral quantum Hall effect~IQHE,
1980! and fractional quantum Hall effect~FQHE, 1982! are
important landmarks of condensed-matter physics in rec
decades.1 In quantum Hall systems, electrons are ‘‘froze
~in their orbital motion! in discrete Landau levels by th
external magnetic field, and have gapped excitations at i
ger or fractional filling factors. There is considerable ric
ness of the phase diagram when additional~i.e., in addition
to the orbital motion! degrees of freedom associated w
spin, layer, or subband index are introduced.1–3 These mul-
ticomponent quantum Hall systems have been extensi
studied both theoretically and experimentally in recent ye
In general, since the spin~Zeeman! energy is much smalle
than the cyclotron energy due to the small effectiveg factor
and the small effective mass of electrons in GaAs based
systems, the spin degree of freedom is not important e
getically compared to the orbital motion. But spin can
crucial when a second quantum Hall system is coupled
herently @for example, in a double quantum well~DQW!
system# or an additional magnetic field is applied in the d
rection parallel to the two-dimensional~2D! semiconductor
quantum well plane. In the first situation, the finite barr
energy between the two wells opens a gap (DSAS) between a
symmetric and an antisymmetric subbands, which can
tuned by electron tunneling, layer separation, and/or b
voltage.2 WhenDSASis close to the Zeeman splitting energ
interesting physics has been predicted theoretically4 and ob-
served experimentally.5,6 On the other hand, physics of th
0163-1829/2002/66~19!/195334~27!/$20.00 66 1953
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second situation, where a tilted magnetic field is applied t
wide width well ~WWW! system to couple subbands of
wide well with spin-split Landau levels, has not yet be
extensively explored. One reason for this is that the stren
of the applied tilted magnetic field has to be very lar
(.25 T) in order to sufficiently enhance the Zeeman ene
to be comparable to the Landau-level separation in Ga
Such strong and uniform magnetic fields has only been av
able very recently.7 From a theoretical point of view, study
ing QH effects in a WWW with tilted magnetic field is dif
ficult because the in-plane magnetic field hybridizes the
electron subbands arising from the confinement potentia
the growth direction~i.e., perpendicular to the 2D plane!
with the orbital Landau levels so that the electron wave fu
tion of a WWW is a complicated combination of electr
~‘‘subbands’’! and magnetic~‘‘Landau levels’’! quantization
even at the single-particle level. It is sometimes simplis
cally believed that if parameters are chosen properly in
isospin language, then a WWW system in a tilted field~at
least for! the closest two Landau levels near the degener
point could be approximately mapped onto a DQW syste
We emphasize that this mapping is not exact and mis
subtle and interesting physics associated with a WWW i
tilted field. For example, experimentally a WWW in a tilte
field is found to display both three-dimensional~3D! and
two-dimensional properties.8 In some situations a WWW
system could behave very much like a DQW system~albeit
with strong tunneling!.9 More strikingly, the recent observa
tion of anisotropic resistance at even filling factors in
WWW system with an in-plane field7 shows a possible stripe
©2002 The American Physical Society34-1
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WANG, DAS SARMA, DEMLER, AND HALPERIN PHYSICAL REVIEW B66, 195334 ~2002!
phase formation induced by electron-electron interact
near a degeneracy or a level crossing point.10

Inspired by the observed anisotropic transport proper
at integer filling factors,7 we investigate in this paper th
collective-mode excitations of integer quantum Hall syste
in a wide quantum well with a tilted magnetic field~i.e., in
the presence of an in-plane magnetic field! by using the time-
dependent Hartree-Fock approximation~TDHFA!. We ex-
tend the work of Kallin and Halperin11 for a strictly 2D sys-
tem, i.e., a zero width well~ZWW! to a WWW system and
derive a full analytical expression for the mode dispers
energy. To keep our theory analytically tractable we cho
our quantum well confinement potential to be parabo
~‘‘parabolic well’’ !. Our choice of parabolic confinement
dictated by the fact that the corresponding single-part
problem~i.e., an electron moving in a one-dimensional pa
bolic potential along thez direction in the presence of a
arbitrary magnetic field! can be exactly analytically solve
enabling essentially a complete analytic solution of
many-body TDHF solution of the collective-mode spec
~essentially on the same footing as the 2D Kallin-Halpe
work in Ref. 11! in the WWW system in the presence of
tilted magnetic field~i.e., both the in-plane field and the pe
pendicular field producing the Landau quantization!. The
work presented in this paper is therefore a direct~and highly
non-trivial! generalization of the strictly 2D Kallin-Halperin
work11 on the magnetoplasmons of a 2D electron gas~in the
presence of only a perpendicular magnetic field! to a para-
bolic WWW system in the presence of a tilted magnetic fie
We study both charge and spin mode collective excitation
systems of different electron densities, magnetic fi
strengths, and well widths. At even integer factors, we fi
that the dispersion of spin-density mode has a magnetor
minimum only at a finite wave vector in the direction pe
pendicular to the in-plane magnetic field, while it increas
monotonously with respect to the wave vector parallel to
in-plane magnetic field. When the in-plane magnetic field
sufficiently strong, this roton minimum may reach zero e
ergy before the ground state becomes polarized, suggest
possible second-order phase transition to a state with bro
translational and spin symmetries. The possibility of t
quantum phase transition~to an anisotropic symmetry
broken state! in the presence of a tilted field is one ma
different result of our work. We also derive the full formu
for the dielectric function of the system within TDHFA b
including the ladder diagrams consistently, so that it can
applied to other systems even when only few Landau lev
are occupied. We include such screening in our collecti
mode calculation and discuss its effect to the magnetoro
minimum.

Before jumping into the details of the collective-mod
calculation, it is instructive to discuss in the appropriate c
text some earlier work in parabolic wells and in the groun
state instability~i.e., the softening of collective modes! of
similar systems. Among the models of finite width wel
parabolic wells are considered special, because the elec
gas, in screening the parabolic conduction-band edge po
tial, forms a constant density slab, being a good approxi
tion to a 3D jellium where electrons move in a consta
19533
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positive background charge density.12 Furthermore, the para
bolic confinement potential can be exactly diagonalized i
center-of-mass coordinate and therefore gives a non-spin
optical absorption energy exactly the same as its noninter
ing result in the long-wavelength limit~the so-called gener
alized Kohn’s theorem!.13,14 As mentioned above, we use
parabolic confinement potential, because it allows us to fi
simple noninteracting eigenstates in the presence of a t
magnetic field, which then provides a good starting point
consider many-body effects. The effects ofimperfectpara-
bolic confinement potential on the collective excitations ha
earlier been studied either with only a perpendicular m
netic field15 or with only an in-plane magnetic field.16 Only
rather small quantitative corrections were found~for ex-
ample, small shift of resonance energy, and slight broaden
of the absorption peak! for realistic wells~which necessarily
deviate from ideal parabolic confinement considered in
work!. We believe therefore that our theoretical resu
should apply with quantitative accuracy to realistic parabo
quantum wells, and qualitatively to rectangular quantu
wells.17

It is generally believed that in both three and two dime
sions, when an infinitely strong magnetic field is applie
electrons undergo a phase transition to a Wigner crystal s
with broken translational symmetry at low temperatures.
the intermediate magnetic-field region, Celli and Mermin18

proposed a long time ago a possible exchange induced s
density-wave~SDW! instability in a three-dimensional elec
tron system. More recently, GaAs based semiconductor w
parabolic wells have been proposed as good candidate
observing such SDW instabilities since wide parabolic we
are essentially ideal 3D electron systems.8,19,20 Brey and
Halperin20 proposed that the SDW instability and the tran
port anisotropy should be observed in a wide parabolic se
conductor quantum well system when an intermediate
plane magnetic field is applied. Similarly, correlation-driv
intersubband SDW instability has been predicted by D
Sarma and Tamborenea in DQW systems at low car
densities.21 Intersubband-induced charge-density-wa
~CDW! instability in a wide parabolic well with a perpen
dicular magnetic field was also investigated.22 To the best of
our knowledge, however, these theoretically proposed~trans-
lational symmetry breaking! instabilities have not yet bee
observed experimentally. The only two experimentally o
served candidates for charge-~or spin-! density-wave insta-
bility in a quantum Hall system are the stripe phases~and the
associate liquid-crystal phases23! in high half-odd-integer
quantum Hall systems (n59/2,11/2, etc.!,24 with or without
in-plane magnetic field, and the stripe phases observed i
integer quantum Hall system in a wide well subject to
strong tilted magnetic field.7 Although the ground state of th
former system has been extensively studied23 and is gener-
ally believed to be a ‘‘unidirectional coherent charge-dens
wave,’’25,26 the transport anisotropy in the wide well with
tilted magnetic field7 is not yet understood and not muc
theoretical work has appeared on this problem except for
recent short communication.27 Our recent work27 based on
Hartree-Fock~HF! calculation in a DQW system shows th
spin-charge-texture~skyrmion! stripe could be the possibl
4-2
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MAGNETOPLASMON EXCITATIONS AND SPIN DENSITY . . . PHYSICAL REVIEW B66, 195334 ~2002!
ground state for a WWW system, providing a possible exp
nation for the observed transport anisotropy in Ref. 7. In t
paper, we show the complete analytical and numerical w
in calculating the collective magnetoplasmon mode disp
sion within TDHFA and the observed mode softening co
firms the existence of the unusual phase proposed in Ref

This paper is organized as follows. In Sec. II we obta
the single-electron eigenstates in a parabolic confinemen
tential with a tilted magnetic field. We first discuss the no
interacting result in Sec. II A and then the interacting~HF!
result in Sec. II B. In Sec. II C we show that at even fillin
factors the system undergoes a first-order phase trans
from an unpolarized ground state for in-plane magnetic fie
Bi,Bi* , whereBi* is a critical in-plane field strength, to
polarized ground state forBi.Bi* . Based on the unpolarize
integral quantum Hall ground state, the full theory with n
merical results for the magnetoplasmon dispersion~within
TDHFA! are given in Sec. III. In Sec. IV we derive th
TDHF dynamical dielectric function for an integer quantu
Hall system in a parabolic well with tilted magnetic field an
use the result to study the magnetoplasmon dispersio
screened TDHFA. Implications of our results are discusse
Sec. V and finally we summarize our work in Sec. VI.

II. SINGLE ELECTRON EIGENSTATES
AND GROUND-STATE ENERGY

A. Noninteracting system

We consider a parabolic confinement potential inẑ direc-
tion, Up(z)5 1

2 m* v0
2z2, wherem* is the electron effective

mass andv0 is the confinement energy. A coordinate syste
is chosen such that the perpendicular magnetic fieldB' is in
ẑ direction and the parallel magnetic fieldBi in x̂ direction,
with the 2D electron system being in thex-y plane. When
the vector potential is chosen in a Landau gauge,AW
5(0,B'x2Biz,0), the noninteracting single electron Ham
tonian can be written as~we set\51 throughout this paper!

H05
1

2m*
S pW 1

eAW

c
D 2

1Up~z!2gmBBtotSz

5
px

2

2m*
1

1

2m*
S py1

eB'x

c
2

eBiz

c D 2

1
pz

2

2m*
1

1

2
m* v0

2z22gmBBtotSz , ~1!
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wheremB is the Bohr magneton, andg;0.44 for GaAs.Sz is
thez component of the spin operator along the total magn
field, whose magnitude isBtot5AB'

2 1Bi
2. py is a good

quantum number in this gauge and can be replaced b
constantk ~the guiding center coordinate!. The remaining
terms can be expressed by a 232 matrix,

H05
1

2m*
~px

21pz
2!1

m*

2
@x8,z#•F v'

2 2v'v i

2v'v i vb
2 G•Fx8

z G
2vzSz , ~2!

where v',i5eB',i /m* c, vb5Av0
21v i

2, vz5gmBBtot ,
and x85x1ck/eB' . The Hamiltonian of Eq.~2! can be
diagonalized by a canonical transformation,@x8,z#T

5Û(u)•@ x̄,z̄#T and @px ,pz#
T5Û(u)•@ p̄x ,p̄z#

T, with

Û~u!5F cosu sinu

2sinu cosuG , ~3!

and tan(2u)522v'v i /(vb
22v'

2 ). The new Hamiltonian
describes two decoupled one-dimensional~1D! simple har-
monic oscillators in new coordinates,x̄ and z̄:

H̄05
1

2m*
~ p̄x

21 p̄z
2!1

m* v1

2
x̄21

m* v2

2
z̄22vzSz , ~4!

where

v1,2
2 5

1

2
@~vb

21v'
2 !6A~vb

22v'
2 !214v'

2 v i
2#. ~5!

Using (nW ,k,s) as eigenstate quantum numbers, wherenW
5(n1 ,n2) is the orbital Landau level index ands561/2 is
the eigenvalues ofSz , one obtains the noninteractin
eigenenergiesEnW ,s

0 and eigenfunctionsfnW ,k,s
0 (rW):

EnW ,s
0

5v1S n11
1

2D1v2S n21
1

2D2vzs, ~6!

and
~7!
4-3
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WANG, DAS SARMA, DEMLER, AND HALPERIN PHYSICAL REVIEW B66, 195334 ~2002!
whereLy is the system length iny direction and the function
FnW ,s

0 (x1 l 0
2k,z) has x and z components only. l 0

[A1/m* v'5Ac/eB' is the conventional cyclotron radius
We keep the spin index inFnW ,s

0 because these notations w
later be generalized to an interacting system, where exp
spin dependence may become crucial. In Eq.~7!, the func-
tion cn

( i )(x) is defined to be

cn
( i )~x!5

1

Ap1/22nn! l i

expF2
x2

2l i
2GHnS x

l i
D , ~8!

with l i[A1/m* v i for i 51,2, andl 0[A1/m* v'5Ac/eB'

is the conventional cyclotron radius.Hn(x) is Hermite poly-
nomial. It is instructive to consider the asymptotic form
the eigenstate energies, Eq.~5!, and wave functions, Eq.~7!,
in the following four extreme limits:~i! Taking an infinite
well width limit, v0→0, v1→Av i

21v'
2 , andv2→0 from

Eq. ~5!, Eq. ~4! then shows that the free moving direction
restored along thez̄ direction, which is perpendicular to th
total magnetic fieldBW tot , showing a 3D property.~ii ! Taking
a zero width limit (v0→`), we haveu→p/2, v1→v0

→`, v2→v' , and thereforecn1

(1)( x̄)→Ad(z) and cn2

(2)( x̄)

→cn2

(0)(x), the usual orbital wave function of a 1D simp

harmonic oscillator. Therefore by changing the value ofv0,
one can obtain a quasi-2D system, which has both pure
and 3D properties, by taking different limits of the confin
ment potential strength.~iii ! Similarly, for zero in-plane
magnetic-field limit (v i→0), we havev1→Max(v' ,v0)
andv2→Min(v' ,v0), so that the orbital motions inx andz
direction are totally decoupled. This is the usual~i.e., without
an in-plane field! quantum Hall system in a parabolic we
whose collective-mode dispersion has been studied in

FIG. 1. Calculated Landau-level energy spectra for noninter
ing electrons in a parabolic quantum well with a parallel~in-plane!
magnetic fieldBi . The system parameters are chosen to be
same as the experimental data in Ref. 7 forn56.
19533
it

D

e

literature.22 ~iv! Finally we can take the strong paralle
~in-plane! magnetic-field limit (Bi→`), which is of interest
in this paper. In this limit, we haveu→p/2, v1→v i→`,
and v2→v0v' /v i→0, i.e., the in-plane magnetic fiel
enhances the effective confinement of a wide well syst
@compared to~ii !# and therefore a WWW system wit
a strong parallel field becomes similar to a thin well~strictly
2D! system with small Landau-level energy separatio
We emphasize, however, that our results shown below ap
for any finite strength ofBi valid to the lowest order of
the ratio of the interaction strength to the noninteract
level separation. We will consider the strong in-pla
magnetic-field limit only when studying the screening effe
in Sec. IV.

Energy levels described by Eq.~6! are shown in Fig. 1 as
a function of in-plane magnetic field for a choice of para
eters similar to the experimental samples in Ref. 7: elect
densityne50.4231012 cm22, m* 50.07m0 (m0 is the bare
electron mass!, andv057 meV. The confinement energy i
such that the size of the first subband electron wave func
in zero field is 260 Å. The perpendicular magnetic fieldB' is
chosen to be 2.97 T forn52.

Using the noninteracting single-particle wave function
Eq. ~7!, the noninteracting single electron Green’s functi
can be easily obtained:

t-

e
FIG. 2. Feynman diagrams of the time-dependent Hartree-F

approximation. Solid lines are single-particle Green’s function a
wavy lines are Coulomb interaction. Single~double! lines are bare
~dressed! Green’s function and/or interaction:~a! the self-consistent
Hartree-Fock approximation for the single electron Gree
function; ~b! and ~c! are, respectively, the Dyson’s equations f
electron-electron interaction, single electron Green’s funct
and vertex function in the time-dependent Hartree-Fock appr
imation. The second term of~c! is the ladder series, while the thir
term is the bubble series~RPA diagram!, which does not appea
when calculating the vertex function for spin-flip excitations~since
the interaction is spin conserving! as mentioned in the text
~d! is the Green’s function in the first-order Hartree-Fo
approximation.
4-4
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wheret i is the imaginary time, andm is chemical potential
at zero temperature. The Heaviside theta functionu(x)51
for x>0 and is zero otherwise.

B. Interacting system in Hartree-Fock approximation

When electron-electron interaction is considered, we
self-consistent Hartree-Fock approximation~SCHFA! to cal-
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e

culate the single-electron wave function self-consisten
by including the Hartree and Fock potentials in the sing
particle Hamiltonian. This approximation is the standa
leading-order many-body~self-consistent! expansion in
the ~unscreened! Coulomb interaction28 whose one-
loop Feynman diagram representation is shown in Fig. 2~a!.
In SCHFA, the wave equation for the quantum Hall syste
is29
EnW ,k,sfnW ,k,s~rW !5FH01E drW 8V~rW2rW8! (
mW ,p,s

nm,p,sfmW ,p,s
†~rW8!fmW ,p,s~rW8!GfnW ,k,s~rW !

2E drW8V~rW2rW8!fnW ,k,s~rW8!(
mW ,p

nmW ,p,sfmW ,p,s
†~rW8!fmW ,p,s~rW !, ~10!
HF
is
in

the

g

wherenmW ,p,s is the filling factor at the specific quantum num
ber, and it satisfies

Ne5 (
mW ,p,s

nmW ,p,s , ~11!

whereNe is the total electron number.H0 is the same as in
Eq. ~1! by takingpy5k. Note that the positive charge dono
density~which produces the electron gas and thus provi
charge neutrality for the whole system! is not explicitly in-
‘cluded above because these donors are usually locate
away from the well in the experiment. In general, this ba
ground doping effect can be effectively included by introdu
ing a screening lengthl into the bare Coulomb interactio
V(qW ) by writing V(qW )5(4pe2/e0)@ uqW u21(2p/l)2#21/2. We
take l5620 Å in our numerical calculation below to b
comparable to the experimental setting.7 This regularization
of Coulomb interaction has little quantitative or qualitati
effects on the results shown in this paper. The details of
donor screening and the exact value ofl do not in any way
affect any of our qualitative conclusions. For the situation
focus in this paper, electrons are assumed to be unifor
distributed in the 2D well plane~i.e.,nmW ,p,s is independent of
guiding center coordinatep), and therefore Eq.~10! can be
simplified further as shown in Appendix A. To solve th
SCHF equation, we first use the noninteracting wave fu
tion to calculate the HF matrix elements and then diagona
s

far
-
-

e

e
ly

-
e

it to get new eigenstates, which are used to calculate the
matrix element again iteratively until self-consistency
achieved. The new single electron Green’s function
SCHFA is similar to the noninteracting one in Eq.~9! except
that the wave functions and energies correspond to
Hartree-Fock theory:

GnW ,s~rW1 ,rW2 ;v!5

(
k

fnW ,k,s
†~rW2!fnW ,k,s~rW1!

@G nW ,s
0

~v!#212SnW ,s
HF

5(
k

fnW ,k,s
†~rW2!fnW ,k,s~rW1!•GnW ,s~v!,

~12!

where GnW ,s
0 (v) is Fourier transform of the noninteractin

propagatorGnW ,s
0 (t):

GnW ,s
0

~v!5E dt eivtGnW ,s
0

~ t !5
1

iv2EnW ,s
0

2m
, ~13!

and similarly

GnW ,s~v!5
1

iv2EnW ,s
0

2SnW ,s
HF

2m
, ~14!
4-5
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where the Hartree-Fock self-energy,SnW ,s
HF

5EnW ,s2EnW ,s
0 , is

obtained from the self-consistent solution of the Hartr
Fock problem@see Appendix A, in particular Eq.~A2!#.

C. Level crossing and total energy

For our purposes, the most important feature of the sp
tra shown in Fig. 1 is the existence of a single-particle le
crossing at Bi519.8 T ~for the noninteracting system!,
where v1;36 meV, andv25vz;1 meV. The origin of
this crossing can be understood by considering
asymptotic form of the energy levels in Eq.~5! for large
parallel magnetic fields:v2→v0v' /v i→0, so that at a
critical in-plane magnetic field value (Bi* ) v2 becomes
smaller than the Zeeman energy leading to the level cros
shown in Fig. 1. For a noninteracting electron gas this le
crossing leads necessarily to a~rather trivial! first-order
phase transition atBi5Bi* with an abrupt change in spi
polarization for systems at even filling factors. Interesti
quantum phase transition that may take place around
level crossing is the main subject of this paper. In particu
we wish to investigate whether quantum level repulsion c
verts this first-order transition to a second-order quant
phase transition around this degeneracy point. Our calcul
mode dispersion can be directly compared to inelastic lig
scattering spectroscopy, when such experiments are eve
ally carried out in these WWW systems in tilted fields. O
can easily use our analytical results to study the magn
plasmon mode dispersion at odd integer filling factors or
weaker in-plane magnetic-field values~where intersubband
coupling needs to be included!.

By using the self-energy obtained from Eq.~10! in
SCHFA, the total energy of an interacting quantum Hall s
tem can be obtained for a given electron configurat
(NW ↑ ,NW ↓), whereNW s is the orbital level index of the highes
filled level of spins. Considering double counting of inte
action energy, the total energy in HF approximation is

Etot
HF~NW ↑ ,NW ↓!5(

s
(

E
nW ,s

0
<E

NW s ,s

0
FEnW ,s

0
1

1

2
SnW ,s

HF G . ~15!

To obtain the ground-state energyEG , one should compare
the total energies of all possible electron configurations
determine which one gives the lowest energy. As indicate
Fig. 1, a first-order~noninteracting! phase transition from an
unpolarized ground state@i.e., NW ↑5NW ↓5(0,n/2)] to a polar-

TABLE I. Table of the critical values of the parallel magnet
field Bi* , where a first-order phase transition occurs from an un
larized ground state to a polarized one for the parameters of Re

n Noninteracting Interacting Interacting
~unscreened! ~screened!

6 19.8 11.1 12.2
8 19.8 10.4 11.5
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ized ground state@NW ↓5NW ↑1(0,2)# is expected to happen a
a critical in-plane magnetic fieldBi* . In the third column of
Table I we show our numerical calculation results ofBi*
obtained from Eq.~15! in the first-order HF approximation
for even filling factorsn56,8. When the total electron den
sity is fixed,Bi* is larger as the filling factorn is lowered by
increasing the perpendicular magnetic field. Therefore
HF results qualitatively agree with the experimental data p
sented in Ref. 7 except for a lower estimate of the criti
magnetic fieldBi* , which may be due to the correlation e
fects not included in the HF approximation and/or the no
parabolicity of the realistic confinement potential of th
quantum well sample used in Ref. 7.

III. MAGNETOPLASMON EXCITATIONS

In this section we will develop the full theory of magne
toplasmon excitations of an integer quantum Hall syst
confined in a parabolic well and subject to a tilted magne
field within TDHFA. For zero width~pure 2D! wells with a
perpendicular magnetic field only, magnetoplasmon mo
were investigated in Ref. 10. We note that magnetoplasm
excitations in parabolic wells have been theoretically d
cussed previously in the literature13,20,22,30–32in different lim-
ited conditions. Our work goes beyond results presented
those papers and we derive the exact dispersion of collec
modes in the lowest order of the ratio of Coulomb interact
to the noninteracting Landau-level separation. In a WW
with tilted magnetic field, there is no translational symme
along the growth direction (z), which is hybridized with the
in-plane components (x2y) so that a many-body theory de
veloped in momentum space seems not to be particul
useful. However, it is shown below in Sec. III A that th
in-plane momentum of an electron-hole dipole in su
WWW with tilted magnetic field is still conserved, showin
the existence of a well-defined electron-hole bound state~a
magnetic exciton!11 and the collective-mode dispersion alon
the 2D plane can still be obtained analytically as we sh
below. The full many-body theory and the numerical resu
for collective-mode dispersion are shown in Secs. III B–III
and in Sec. III F, respectively.

A. Momentum conservation of an electron-hole dipole pair

As pointed out in Ref. 11, a crucial fact that allows one
explicitly write analytical expressions of the energy disp
sion of magnetoplasmon excitations is the existence o
good quantum number in the problem given by the well d
fined in-plane momentum of the electron-hole dipole p
~magnetic exciton!. It is easy to show that their argument ca
be extended to the case of a WWW with anarbitrary con-
finement potential along thez direction even in the presenc
of a tilted magnetic field. This is not obvious since the tilt
magnetic field typically hybridizes the in-plane motion wi
the subband dynamics perpendicular to the plane, destro
the apparent translational symmetry. Consider the Ham
tonian of a magnetic exciton or an electron-hole pair in
general quasi-2D system,

-
7.
4-6
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HX5
1

2m*
F S pW 12

e

c
AW ~rW1! D 2

1S pW 21
e

c
AW ~rW2! D 2G2V~rW12rW2!

1U~z1!1U~z2!, ~16!

where particle momentapW i , vector potentialAW , and particle
coordinatesrW i are all three-dimensional vectors.V(rW) and
U(z) are electron-electron Coulomb interaction and
quantum well confinement potential, respectively. The Z
man term is neglected here because it is irrelevant for
discussion. Following Ref. 11 a magnetic exciton moment
operator can be defined to be

QW X5pW 11pW 22
e

c
@AW ~rW1!2AW ~rW2!#1

e

c
BW tot3~rW12rW2!,

~17!

whereBW tot5B'ẑ1Bix̂. Using the Landau gauge for the ve
tor potential one can easily verify that the in-plane comp
nents QW X,'5(QX,x ,QX,y) commute with the Hamiltonian
Existence of dipole excitations with well defined momen
~eigenvalues ofQW X,') immediately follows from this com-
mutation. Similar to Ref. 11, we can construct the ze
momentum magnetic exciton wave function in a parabo
well with a tilted magnetic field:

C
nW b ,nW a

sb ,sa~Dx,Dy,Z,Dz!5E dh e2 ihDy/ l 0
2
FnW b ,sb

~h1Dx/2,

Z1Dz/2!FnW a ,sa
~h2Dx/2,

Z2Dz/2!, ~18!

where a hole is in a statenW a5nW and a particle is in a stat
nW b5nW a1mW . For the exciton wave function of finite momen
tum qW' , one just needs to replaceDrW'5(Dx,Dy) by DrW'

2 l 0
2qW'3 ẑ, and introduce a plane-wave prefactor for t

center-of-mass coordinate.11 Note that this wave function ha
additional dynamics alongz direction: center of mass~Z! and
relative (Dz) coordinates of the electron-hole pair. Oth
than this additionalz dynamics, the only difference betwee
the exciton wave functions for the ZWW 2D system11 with a
perpendicular magnetic field@see Eq.~B1! or Ref. 11# and
for the WWW with a tilted magnetic field~our interest in this
paper! is that the latter has one more Landau-level quant
number associated with the subband dynamics induced
the confinement energy of the well. In Appendix B we sho
that the magnetoplasmon energy in our theory can be
pressed in terms of the magnetic exciton wave function gi
in Eq. ~18!. This provides a more comprehensive and phy
cal picture for understanding the collective-mode excitatio
discussed in this paper~see Appendix B in this context!.

B. Correlation function

In the linear-response theory, collective-mode energies
obtained by the poles of a density correlation functionPl ,
where l5r, S6 , and Sz , for the singlet charge densit
mode and the three triplet spin-density modes, respectiv
19533
e
-
is

-

-
c

by

x-
n
i-
s

re

ly.

We define an operator,Ql51,2S6 ,2Sz , respectively, for
the spin vertex operator of each corresponding correla
function. In this notation the most general form of these c
relation functions in coordinate space is28

Pl~rW,t;rW8,t8!52 i(
s1,2

(
s1,28

@Ql#s1 ,s2
@Ql#s

18 ,s
28
^T@Ĉs1

† ~rW,t !

3Ĉs2
~rW,t !Ĉs

18
†

~rW8,t8!Ĉs
28
~rW8,t8!#&G , ~19!

whereĈs
†(rW,t)@Ĉs(rW,t)# are the electron field creation~an-

nihilation! operators of spacerW and spin s at time t;
T@•••# is the time-order operator, and^•••&G is the expec-
tation value of the interacting ground state. In a WWW sy
tem, there is no translational symmetry along thez direction
so that one has no correlation function in momentum sp
in thez direction. The usual momentum space description
the vertex function and the related Dyson’s equation th
seems not feasible because the in-plane magnetic field m
the z dynamics with in-plane dynamics.20,22,31Actually the
system is more like a 2D quantum dot14 in the x-z plane
confined by two independent parabolic potentials along thx̄

and z̄ axes as shown in Eq.~4!. The method we develop in
this paper, however, enables one to obtain directly the ap
priate Dyson’s equations for the screened interaction and
vertex function without evaluating the correlation functio
of Eq. ~19!. The magnetoplasmon excitation dispersion a
the dielectric function relevant for screening can be read
directly from our equations given in the next section. No
that the theory developed below is independent of the ex
form of the single electron wave function and is complete
general within the TDHFA.

C. Screened interaction and vertex function

Before exploring the many-body theory for the collecti
mode, we first define the interaction matrix element, wh
will be used frequently later. Using the interacting sing
particle wave function, the unscreened matrix element o
bare Coulomb interactionV(rW) can be obtained,

V
nW 1nW 4 ,nW 2nW 3

k1k4 ,k2 ,k3 ,s1s2ds1s4
ds2s3

5E drW1E drW2V~rW12rW2!fnW 1 ,k1 ,s1

†~rW1!fnW 2 ,k2 ,s2

†

3~rW2!fnW 3 ,k3 ,s3
~rW2!fnW 4 ,k4 ,s4

~rW1!ds1s4
ds2s3

5
1

V (
qW

dk42k1 ,2qy
dk32k2 ,qy

e2 i (k12k22qy)qxl 0
2

3V
nW 1nW 4 ,nW 2nW 3

s1s2 ~qW !ds1s4
ds2s3

, ~20!

whereV is the well volume and we define an effective i

teraction, V
nW 1nW 4 ,nW 2nW 3

s1s2 (qW )[V(qW )A
nW 1nW 4

s1s1(2qW )A
nW 2nW 3

s2s2(qW ), where

the form factorA
nW i n

W
j

s is j(qW ) is obtained from the single-particl

wave functions,
4-7



pr

e
-

-
r-

e
e

r

d

in-
a-
al

is
of

m

Eq.

WANG, DAS SARMA, DEMLER, AND HALPERIN PHYSICAL REVIEW B66, 195334 ~2002!
A
nW i n

W
j

s is j~qW !5E drWe2 iqW •rWfnW i ,2qy/2,s i

†~rW !fnW j ,qy/2,s j
~rW !

5E dxE dze2 iqxx2 iqzzFnW i ,s i
~x2qyl 0

2/2,z!

3FnW j ,s j
~x1qyl 0

2/2,z!. ~21!

Momentum and spin conservations during the scattering
cess have been included in Eq.~20!.

Note that in the strong parallel magnetic-field regim
(10 T,Bi,25 T), only a few Landau levels of the first sub
band (n150) are occupied at zero temperature sincev1
@v2 @see Eq.~6! and Fig. 1#. Therefore we could omit the
first orbital ~i.e., subband! level index and neglect all inter
subband transitions~i.e., excitations between levels of diffe
entn1) by assuming for simplicity thatn150 throughout our
analysis and numerical calculations shown below exc
where noted otherwise. In other words, the vector repres
tation used in Eq.~5! for orbital Landau-level index,nW
5(n1 ,n2)5(0,n2), is simplified to ben and so are all othe
orbital notations @like mW 5(0,m2)5m and NW s5(0,Ns)
5Ns , etc.# from now on in this paper. It is straightforwar
rte

-

es
m

-
ar
m
rs

o

te
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to extend all of our analytical and numerical results to
clude excitations of both orbital quantum numbers. All an
lytical results would retain the same form with addition
level indices~i.e., other value ofn1) showing up in the for-
mula. Our numerical results will not be affected at all by th
assumption in the strong in-plane magnetic-field region
our interest where hybridization with highern1 levels is neg-
ligiblly small. We also will not show the spin index explicitly
during the derivation except in the final results. We start fro
the screened Coulomb interactionṼ(rW1 ,rW2 ,t12t2), caused
by electron-hole polarization@see Fig. 2~b!#:

Ṽ~rW1 ,rW2 ;t12t2!5V~rW12rW2!d~ t12t2!1E drW3E drW4

3V~rW12rW3!P~rW3 ,t1 ;rW4 ,t2!V~rW42rW2!,

~22!

where P(rW1 ,t1 ;rW2 ,t2)5Pr(rW1 ,t1 ;rW2 ,t2) is the reducible
charge polarizability@see Eq.~19!#. Multiplying by single-
particle wave functions and doing the space integration,
~22! can be transformed to
Ṽ1,4;2,3~ t12t2![E drW1E drW2Ṽ~rW1 ,rW2 ;t12t2!f1
†~rW1!f2

†~rW2!f3~rW2!f4~rW1!

5V1,4;2,3d~ t12t2!1(
ab

V1,4;baS E dt5dt6Ga~ t12t5!Gb~ t62t1!

3E
2,4,5,6

fa
†~rW5!fb~rW6!g~rW5 ,t5 ;rW6 ,t6 ;rW4 ,t2!V~rW42rW2!f2

†~rW2!f3~rW2! D
5V1,4;2,3d~ t12t2!1(

ab
V1,4;baG̃ab;2,3~ t12t2!, ~23!
or-

-
n
ig-

n-
ven-

h

where we have introduced a conventional reducible ve

function, g(rW5 ,t5 ;rW6 ,t6 ;rW4 ,t2), in coordinate space to ex
press the reducible polarizabilityP; index a(b) denotes all
related quantum numbers of that level, (ma(b) ,pa(b) ,sa(b)),

i.e., fa(rW)5fma ,pa ,sa
(rW), Ga(t)5Gma ,sa

(t), V1,4;ab

5Vn1n4 ,mamb

k1k4 ,papb ,s1sa, and G̃ab;2,35G̃mamb ;n2n3

papb ;k2k3 ;sasb ,s2s3 for

simplicity ~number indices represent external variabl
while Greek indices represent dummy variables in a sum

tion! and * i[*drW i . To avoid confusion, we clarify our no
tations which are necessarily different from the stand
many-body textbook terminology because of the highly co
plicated nature of our single-particle wave functions. Fi

V1,4;2,3andVn1n4 ,n2n3
(qW ) are different functions according t

their definition in Eq.~20!; secondly theG̃ function in Eq.
~23! is not the same as the conventional definition of a ver
function due to our inclusion inG̃ of additional two electron
x

,
a-

d
-
t

x

Green’s functions and one interaction term@however,g is the
same as the conventional reducible vertex function in co
dinate space; see Fig. 2~c!#. This is because, unlike a ZWW
~pure 2D! in Ref. 11 or a WWW without any in-plane mag
netic field,22 the z component of the electron wave functio
of our system is not separable and therefore cannot be
nored. It is more convenient to work in the relevant co
served quantum number space rather than in the con
tional momentum space.

The leading order~of the ratio of the interaction strengt
to the noninteracting energy separation,v2) of the vertex
function, G̃ab;2,3(t12t2), is obtained by using

g~rW5 ,t5 ;rW6 ,t6 ;rW4 ,t2!

5d~rW52rW4!d~rW62rW4!d~ t52t2!d~ t62t2!

in Eq. ~23!:
4-8
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Gab;2,3~ t12t2!5Ga~ t12t2!Gb~ t22t1!Vab;2,3, ~24!

which has the following Fourier transform in time:
a
th

f

le

19533
Gab;2,3~v!5Dab~v!Vab;2,3, ~25!

where~after retrieving the spin index!
Dab~v!5
u~msa

2Nsa
!u~Nsb

2msb
!2u~msb

2Nsb
!u~Nsa

2msa
!

~msb
2msa

!v22~sb2sa!vz1 iv
, ~26!
n-
a

ig.
,

is nonzero only when the dipole pair (a,b) represents one
hole in the filled level and one electron in the empty level
zero temperature. To avoid confusion, here we clarify
meaning ofsa(b) , msa(b)

, and Nsa(b)
in Eq. ~26! again:

sa(b) is the spin quantum number of statea(b), msa(b)

5(0,msa(b)
)5mW sa(b)

is the orbital Landau-level index o

state a(b), and Nsa(b)
5(0,Nsa(b)

)5NW sa(b)
is the orbital

Landau level index of the highest filled level of spinsa(b) as
first defined in Eq.~15!. We will see later thatDab(v) is the
only dynamical part of the vacuum electron-hole bubb
Note that when spin is included,Vab,gl impliessa5sb and
t
e

.

sg5sl automatically because of the manifestly spi
conserving non-spin-flip nature of Coulomb interaction. As
consequence, Gab;2,3(t12t2) in Eq. ~25! @but not
g(rW5 ,t5 ;rW6 ,t6 ;rW4 ,t2) in Eq. ~23!# then becomes identically
zero when considering spin-flip excitations.

D. Dyson’s equations in TDHFA

Including ladder and bubble diagrams as shown in F
2~c!, Dyson’s equation for the full vertex function
G̃ab;2,3(t12t2), is
G̃ab;2,3~ t12t2!5Gab;2,3~ t12t2!1E dt5dt6Ga~ t12t5!Gb~ t62t1!d~ t52t6!E
2,4,5,6

fa
†~rW5!fb~rW6!V~rW42rW2!f2

†~rW2!f3~rW2!

3F2E
7,8
E dt7dt8G~5,7!G~8,6!V~rW52rW6!g~rW7 ,t7 ;rW8 ,t8 ;rW4 ,t2!G

1E dt5dt6Ga~ t12t5!Gb~ t52t1!d~ t52t6!E
2,4,5,6

fa
†~rW5!fb~rW5!V~rW42rW2!f2

†~rW2!f3~rW2!

3F E
7,8
E dt7dt8G~6,7!G~8,6!V~rW52rW6!g~rW7 ,t7 ;rW8 ,t8 ;rW4 ,t2!G , ~27!
s
in
which can be further simplified to

G̃ab;2,3~ t12t2!5Gab;2,3~ t12t2!1E dt5Ga~ t12t5!

3Gb~ t52t1!(
mn

@2Vam;nb1Vab;nm#

3G̃mn;2,3~ t52t2!, ~28!

with the following Fourier transform in time:
G̃ab;2,3~v!5Gab;2,3~v!1Dab~v!(
mn

@2Vam;nb

1Vab;nm#G̃mn;2,3~v!. ~29!

Similarly, the Fourier transform of Eq.~23! gives

Ṽ1,4;2,3~v!5V1,4;2,31(
ab

V1,4;baG̃ab;2,3~v!. ~30!

Equations~29! and~30! are, respectively, Dyson’s equation
for the vertex function and the interaction matrix element
the quantum number,a[(ma ,pa ,sa), space.
4-9
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In order to investigate the magnetoplasmon dispers
one has to integrate out the continuous variablek in Eqs.~29!
and ~30! to get a matrix representation in the level ind
only. Taking into account the momentum conservat
h

is
a

th

e
e
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n,

n

shown in Eq.~20!, we define a new unscreened matrix e

ment and a new bare vertex function given by~let qW'[qxx̂

1qyŷ be the in-plane momentum!
Un1n4 ,n2n3
~qW'![(

k1

ei (k12k2)qxl 0
2
Vn1n4 ,n2n3

k11qy/2,k12qy/2;k22qy/2,k21qy/2
5

1

2p l 0
2Lz

(
qz8

Vn1n4 ,n2n3
~qW' ,qz8!, ~31!

Lmamb ;n2n3
~qW' ,v![@Dmamb

~v!#21(
k1

ei (k12k2)qxl 0
2

Gmamb ;n2n3

k11qy/2,k12qy/2;k22qy/2,k21qy/2
5Umamb ;n2n3

~qW'!, ~32!
ec.
i-
on

rgy
in-
or

ta-

tion

or

de-

n a
where LxLy52p l 0
2Nf , and Nf is the degeneracy of eac

Landau level. Note that in Eqs.~31! and ~32! only the in-
plane component of momentumqW' is shown explicitly. This
follows from the fact that the in-plane exciton momentum
a good quantum number even in the presence of tilted m
netic field as discussed in Sec. III A. Expressions for
screened matrix elementŨ and the full vertex functionL̃
can be similarly obtained using thek summation overṼ and
G̃ as in Eqs.~31! and ~32!. After some tedious analysis, w
obtain the following pair of matrix equations in Landau lev
indices:

Ũn1n4 ,n2n3
~qW' ,v!5Un1n4 ,n2n3

~qW'!1 (
mamb

Un1n4 ;mbma
~qW'!

3Dmamb
~v! L̃mamb ;n2n3

~qW' ,v!, ~33!

L̃mamb ;n2n3
~qW' ,v!5Lmamb ;n2n3

~qW' ,v!

1 (
mmmn

Wmamb ;mnmm
~qW'!Dmmmn

~v!

3L̃mmmn ;n2n3
~qW' ,v!, ~34!

where the new interaction functionW is

Wmamb ;mnmm
~qW'![2Umamm ;mnmb

bind ~qW'!1Umamb ;mnmm
~qW'!.

~35!

The ladder ~exciton binding! energy Ubind(qW') and the
random-phase-approximation~RPA! energy U(qW') are re-
spectively~after retrieving the spin index!

Umamm ;mnmb

bind,sasn ~qW'!5
1

V (
qW 8

ei (qxqy82qyqx8) l 0
2
Vmamm ;mnmb

sasn ~qW 8!

52
1

V (
qW 8

cos~qxqy82qyqx8!l 0
2

3V~qW 8!Amamm

sasa ~2qW 8!Amnmb

snsn ~qW 8! ~36!
g-
e

l

Umamb ;mnmm

sasn ~qW'!5
1

2p l 0
2Lz

(
qz8

Vmamb ;mnmm

sasn ~qW' ,qz8!

5
1

2p l 0
2Lz

(
qz8

V~qW ,qz8!Amamb

sasa

3~2qW' ,2qz8!Amnmm

snsn ~qW' ,qz8!. ~37!

Note that the non-spin-flipping interaction, (sa
5sm , sn5sb) for Eq. ~36! and (sa5sb ,sn5sm) for Eq.
~37!, is already incorporated above. As mentioned in S
III B, instead of calculating the irreducible polarizability d
rectly, we derive the Dyson’s equations of the interacti
matrix element and a special vertex function in Eqs.~33! and
~34!, which can be used to obtain the collective-mode ene
and dielectric function. Above derivation and results are
dependent of the details of single-particle wave functions

FIG. 3. Energy-level configuration for electron-hole pair exci
tions. Solid~dashed! lines are for spin down~up! levels with level
index in the left-hand side~the first orbital level index is set to be
zero!, and the upward arrow represents an electron-hole excita
~a magnetic exciton!. ~a! is for the two 232 matrix representation
of Eqs.~41! and~42!: electron-hole pairs of numbers 1 and 2 are f
Ys , and numbers 3 and 4 are forYr , respectively.~b! shows the
configuration for one spin-flip excitation (ds511) including next
higher-order energy excitations, which are beyond the TDHFA
veloped in the paper.@Note that in~b!, the excitation from leveln to
n12 does not couple to pair number 1 due to parity symmetry i
parabolic well.#
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eigenenergies, and are valid for arbitrary quantum well c
finement potential, provided the relevant form functi
Aninj

s is j(qW ) of Eq. ~21! is appropriately modified. In conside

ing the spin degree of freedom, only non-spin-flip modes
included in Eqs.~33! and ~34!. The spin-flip modes do no
include the bubble diagram due to the spin conservation
plied by the interaction shown in Eq.~33!, and
Wmamb ;mnmm

(qW') of Eq. ~35! therefore becomes the same

the exciton binding energy,Umamm ;mnmb

bind (qW'), for the same

reason. For convenience we will not distinguish these t
s
le
ll

els
ns
o

e
on

g
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modes here until we get to the final results in the followi
section.

E. Energy dispersion of magnetoplasmon excitations:
Analytical expression

Solving Eq. ~34! one can obtain the vertex function
L̃mmmn ;n2n3

(qW' ,v), and substitute it in Eq.~33! to get the
full formula for screened Coulomb interaction@using
Lmmmn ;n2n3

(v,qW')5Ummmn ;n2n3
(qW') according to Eq.~32!#:
Ũn1n4 ,n2n3
~v,qW'!5Un1n4 ,n2n3

~qW'!

1 (
mamb

Un1n4 ;mbma
~qW'!Dmamb

~v! (
mmmn

@damdbn2Dmamb
~v!Wmmmn ;mbma

~qW'!#21Lmmmn ;n2n3
~qW' ,v!

5 (
mamb

Un1n4 ;mbma
~qW'!@«21~v,qW'!#mamb ;n2n3

, ~38!
e

on,

d-
li-

e
ated

,

n
p

where the dielectric function,e(v,qW'), is a matrix function,

[«~v,qW'!] mamb ;n2n3

21

5dn2mb
dn3ma

2 (
mmmn

@Ymamb ,mmmn
~v,qW'!#21

3Ummmn ;n2n3
~qW'!, ~39!

and the ‘‘dispersion matrix’’Y is

Ymamb ,mmmn
~v,qW'![$2dmamm

dmbmn
@Dmamb

~v!#21

1Wmmmn ;mbma
~qW'!%. ~40!

The TDHF dynamical dielectric function appearing in Eq
~39! and ~40! includes infinite series of both RPA bubb
diagrams and the excitonic ladder diagrams. Theoretica
given a finite matrix size by including relevant Landau lev
~i.e., by appropriately cutting off the infinite matrix equatio
give above!, one can numerically calculate each element
the dielectric function and obtain the collective-mode disp
sions by solving the standard collective-mode equati
det$e(v,qW')%50. However, it is easy to see from Eq.~39!

that solvingv from det$e(v,qW')%50 is the same as solvin
.

y,

f
r-
,

v from det$Y(v,qW')%50, or more conveniently, the sam

as solving the eigenvalue equation ofY(0,qW') because

Y(v,qW')5Y(0,qW')1 iv•I , where I is the identity matrix
due to the special form ofDmamb

(v) in Eq. ~26!. Therefore

focusing on the collective-mode dispersion in this secti

we will discuss the dispersion matrixY(0,qW') below in more
detail instead of the dielectric function itself, which is stu
ied in the next section. We note that this theoretical simp
fication of the equivalence between the simple staticY func-
tion and the dynamical dielectric function in obtaining th
collective-mode dispersion has not earlier been appreci
in the literature.

According to Eq.~26!, the only valid matrix element of
Eq. ~40! should be for the pair (ma ,mb) of one electron in
an empty level,ma(mb), and one hole in a filled level
mb(ma). To the lowest order of (e2/e0l 0)/v2, only four
levels, (N,↑), (N,↓), (N11,↑), and (N11,↓) are included
@see Fig. 3~a!#, whereN5n/221 is the level index of the
highest filled level~note the first Landau index has bee
taken to be zero!. After separating spin-flip and non-spin-fli
modes, one can obtain two 232 Y matrices for spin-flip (s)
and non-spin-flip (r) excitations respectively~after retriev-
ing the spin index!:
Ys~qW'!5FDENN11
↓↑ 2UNN,N11N11

bind,↓↑ ~qW'! 2UNN11,NN11
bind,↓↓ ~qW'!

2UN11N,N11N
bind,↑↑ ~qW'! DENN11

↑↓ 2UNN,N11N11
bind,↑↓ ~qW'!

G , ~41!

Yr~qW'!5FDENN11
↓↓ 2UNN,N11N11

bind,↓↓ ~qW'!1UNN11,N11N
↓↓ ~qW'! UNN11,N11N

↓↑ ~qW'!

UNN11,N11N
↑↓ ~qW'! DENN11

↑↑ 2UNN,N11N11
bind,↑↑ ~qW'!1UNN11,N11N

↑↑ ~qW'!
G , ~42!
4-11
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where DEn1n2

s1s25En2 ,s2

0 2En1 ,s1

0 1Sn2 ,s2

HF 2Sn1 ,s1

HF is the

HF single-particle energy difference. Note that the o
diagonal term in Ys(qW') is omitted in the paper by
Kallin and Halperin11 for a ZWW system, because they ju
considered the leading order 131 matrix representation o
Ys . Using UN11N,N11N

bind,↓↑ (qW')5@UNN11,NN11
bind,↓↑ (qW')#* , wecan

obtain the dispersions of three spin collective modes and
charge collective mode accordingly by solvin
the determinantal equation forY @note that for systems
of even filling factor, n52(N11), the spin index can
be neglected in the self-energySn,s

HF and interactions,U and
Ubind if the ground state is unpolarized and hence s
symmetric#:

vs1
~qW'!5v21SN11

HF 2SN
HF2UNN,N11N11

bind ~qW'!

2Avz
21uUNN11,NN11

bind ~qW'!u2/4, ~43!

vs2
~qW'!5v21SN11

HF 2SN
HF2UNN,N11N11

bind ~qW'!

1Avz
21uUNN11,NN11

bind ~qW'!u2/4, ~44!

vsz
~qW'!5v21SN11

HF 2SN
HF2UNN,N11N11

bind ~qW'!, ~45!

vr~qW'!5v21SN11
HF 2SN

HF2UNN,N11N11
bind ~qW'!

12UNN11,N11N~qW'!. ~46!

Equations~43!–~46! are our main analytical results in th
paper, which are the formal generalizations of the cor
sponding results in Ref. 11 to a WWW in the tilted fiel
except for the square-root term in Eqs.~43! and ~44!. This
shows that the off-diagonal term ofYs(qW') is an exchange-
interaction-induced level-repulsing effect for the two sp
triplet modesvs6

, and effectively increases the Zeeman e
ergy. Note that the analytical derivation given above is
related to any specific form of the single-particle wave fun
tion which enters only through the actual calculations of
various matrix elements in Eqs.~43!–~46!. The only con-
straint on the wave functions is that they must be obtaine
a conserving approximations. There are several approxi
tions we can use to obtain the single-particle wave functi
and eigenenergies. Here we will compare two of them: on
the fully SCHF approximation as shown in Eq.~10!, and the
other one is the first-order Hartree-Fock approximati
where electron Hartree and Fock potential are calculated
noninteracting electron wave functions, which are not ren
19533
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-
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malized by a self-consistent equation@see Fig. 2~d!#. It is
shown later that such a first-order Hartree-Fock approxim
tion does capture the most important contribution of t
SCHFA, but is computationally much easier than the num
cal results from the SCHF equations. In fact, as mentio
before, the TDHFA in solving collective-mode dispersion
exact only to the leading order in the interaction. Therefo
in some sense thesingle-particle wave functions and
eigenenergies calculated in the full SCHFA are not guar
teed to give bettercollective-mode dispersion energies tha
those calculated in the simple first-order HF approximati
although the former may very well be better in calculati
the single electron properties~such as the electron densit
profile or absorption spectra.30! In fact, we believe that in the
spirit of our TDHFA calculation for the collective-mode dis
persion, it is actuallybetter to use the first-order HF wave
functions and energies in the collective-mode calculation
view of the excitations of the theory in the leading-ord
Coulomb interaction. The use of such first-order HF wa
functions and energies in the TDHFA calculation
collective-mode dispersions ensures that all quantities en
ing the theory are leading order in the Coulomb interaction33

Therefore it is instructive to show the corresponding form
of the first-order HF approximation in our theory here a
we will compare the two sets of numerical results~SCHF
and first-order HF! in the next section. Defining the first
order interaction matrix element similar to Eqs.~20! and~21!
by using the noninteracting wave functions in Eq.~7!, we
have

A
nW i n

W
j

(0),s is j~qW !5E drW e2 iqW •rWfnW i ,2qy/2,s i

0 †~rW !fnW j ,qy/2,s j

0
~rW !

5E dxE dz e2 iqxx2 iqzzFnW i ,s i

0
~x2qyl 0

2/2,z!

3FnW j ,s j

0
~x1qyl 0

2/2,z!, ~47!

whose analytical expression for a parabolic well could
obtained by using the generalized Laguerre polynomial d
cussed in Appendix C. As a consequence, one can also o
the analytical expression corresponding to Eqs.~44!–~46! in
the first-order Hartree-Fock approximation. For convenien
we first define two new dimensionless quantities,Q1(qW ) and
Q2(qW ), as following:

Q1~qW !5
cos2u~qyl 0!21~cosuqxl 02sinuqzl 0!2l1

2

2l1
,

~48!

Q2~qW !5
sin2u~qyl 0!21~sinuqxl 01cosuqzl 0!2l2

2

2l2
.

~49!
4-12
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The first-order RPA~direct! energy then becomes~suppress-
ing the spin index here!

UNN11,N11N
(1) ~qW'!5

1

2p l 0
2Lz

(
qz8

V~qW' ,qz8!uAN11N
(0) ~qW' ,qz8!u2

5
1

2p l 0
2Lz~n11!

(
qz8

V~qW ,qz8!
19533
3exp@2Q1~qW' ,qz8!#

3exp@2Q2~qW' ,qz8!#

3Q2~qW' ,qz8!uLN
1 @Q2~qW' ,qz8!#u2, ~50!

whereLn
m(x) is the generalized Laguerre polynomial and t

first-order exciton binding~exchange! energy is
n levels
UNN,N11N11
(1),bind ~qW'!5

1

V (
qW 8

cos@~qxqy82qyqx8!l 0
2#V~qW 8!ANN

(0)~2qW 8!AN11N11
(0) ~qW 8!

5
1

V (
qW 8

cos@~qxqy82qyqx8!l 0
2#V~qW 8!exp@2Q1~qW'8 !#exp@2Q2~qW'8 !#LN

0 @Q2~qW'8 !#LN11
0 @Q2~qW'8 !#.

~51!

For the first-order HF self-energy, it is more convenient and instructive to show the self-energy difference betwee
N andN11 individually for the direct or the Hartree term (SH) and the exchange or the Fock term (SF):

SN11
(1),H2SN

(1),H5
2

2p l 0
2Lz

(
qz

(
l 50

N

V~qz!All
(0)~qz!@AN11N11

(0) ~qz!2ANN
(0)~qz!#

5
2

2p l 0
2Lz

(
qz

V~qz!exp@2Q1~qz8!#exp@2Q2~qz8!#$LN11
0 @Q2~qz8!#2LN

0 @Q2~qz8!#%(
l 50

N

Ll
0@Q2~qz8!#, ~52!

SN11
(1),F2SN

(1),F5
21

V (
qW

V~qW !F(
l 50

N

uAl ,N11
(0) ~qW !u22(

l 50

N

uAlN
(0)~qW !u2G

5
21

V (
qW

V~qW !exp@2Q1~qW !#exp@2Q2~qW !#
1

N! (
l 50

N

@Q2~qW !#N2 l l ! F 1

N11
Q2~qW !uLl

N112 l@Q2~qW !#u2

2uLl
N2 l(Q2(qW )u2G . ~53!
a-
It is easy to prove that

SN11
(1),H2SN

(1),H522UNN11,N11N
(1) ~0W !,

SN11
(1),F2SN

(1),F5UNN,N11N11
(1),bind ~0W ! ~54!
by using the following two identities for the generalized L
guerre polynomials:

xLn
m11~x!5~n1m11!Ln

m~x!2~n11!Ln11
m ~x!,

(
l 50

n

Ll
m~x!5Ln

m11~x!. ~55!
4-13
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Equation~54! shows that in the long-wavelength limit, th
charge-density collective mode has the same energy a
noninteracting result~as it must!,

vr
(1)~qW'→0!5E0,N11,↓

0 2E0,N,↑
0 5v2 , ~56!

which reflects the generalized Kohn’s theorem.13 This shows
that the time-dependent Hartree-Fock approximation we
ply in this paper is a current-conserving approximation to
leading-order single electron wave functions and eigene
gies. From the numerical calculation presented in the n
section, such a generalized Kohn’s theorem,vr(qW'→0)
5v2, is true also for Eq.~46!, where the electron wave
function is calculated self-consistently through Eq.~10!.
However, one should note that if one includes the lar
matrix size in Eq.~40! to go beyond the lowest order i
(e2/e0l 0)/v2 @see Fig. 3~b!#, there is no such exact cance
lation, since some more diagrams~higher order in the inter-
action! should be included in Fig. 2 in order to obtain th
current-conserving theory for collective modes in high
order calculations.

FIG. 4. Magnetoplasmon dispersions forn56 andBi ~alongx
direction! is 11 T, calculated from Eqs.~44! and~46!. ~a! and~b! are
for momentum alongx and y directions, respectively. Thick~thin!
lines are for wave functions calculated from self-consistent Hart
Fock and from first-order Hartree-Fock approximations, resp
tively.
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F. Energy dispersions of magnetoplasmon excitations:
Numerical results

The two 232 matrices shown in Eqs.~41! and ~42! give
different magnetoplasmon excitation branches: three tri
spin-density excitations~denoted byvs6

and vz), and one

singlet charge-density excitation~denoted byvr). In Fig. 4
we show the calculated dispersion energies of the cha
mode, vr(qW'), and the lowest energy triplet spin mod
vs1

(qW'), for a typical parallel magnetic field,Bi511 T at

filling factor n56 and other system parameters chosen
correspond to the experimental sample.7 The most important
feature in the spectra is that there is an energy minim
~‘‘magnetoroton’’! at a finite wave vector,qy* ; l 2

21 , in the
spin mode dispersion along they direction~perpendicular to
the in-plane magnetic field which is along thex axis!, while
no such finite wave-vector minimum exists along thex di-
rection. Comparing with the zero width 2D results~without
any in-plane field! obtained in Ref. 11, where a roton min
mum is found in the spin mode alongboth directions, one
finds that the finite width reduces the electron-hole bind
energy@Eq. ~36!#, which is the origin of the roton minimum
in the magnetic exciton picture, along the direction of t
in-plane magnetic field.~Note that for a ZWW system, the
in-plane magnetic field does not change the electron orb
wave functions and it simply increases the Zeeman ene
only, which is proportional to the total magnetic field.! From

e-
-

FIG. 5. Charge mode dispersionvr(qW') of magnetoplasmon
excitations of the same system as used in Fig. 4 but for differ
filling factors,n52, 4, 6 and 8, for comparison.
4-14
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the energetic point of view therefore this ‘‘softening’’ ass
ciated with the development of the roton minimum~trans-
verse to the in-plane field direction! implies that the ground
state of such a quantum Hall system has a tendency to m
a transition from a uniform, unpolarized state to a sp
density-wave state with broken translational and spin sy
metries, particularly if this roton minimum reaches zero e
ergy in some situations. In our calculation, the minimu
energy of the spin mode (vs1

) goes to zero energy atBi

512.5 T. However, this value is close to, but slightly larg
than, the critical in-plane magnetic field,Bi* 511.1 meV,
where the ground state makes the first-order sp
polarization transition from a paramagnetic (n↑5n↓) to the
spin-polarized state (n↓5n↑22) ~see Table I! in the Hartree-
Fock approximation. Therefore within our HF approximati
the roton-minimum of the spin mode dispersion does
actually go to zero energy before the whole system und
goes a first-order phase transition to a polarized ground s
Calculating the collective-mode energies for apolarized
ground state after level crossing, we find that this roton m
mum energy does not vanish, and in fact, may even incre
in magnitude. Therefore we do not observe a true mode s
ening in the spin-density excitation in the present Hartr
Fock approximation although we see a clear tendency tow
such a possibility within our HF theory. It is certainly po
sible that a more sophisticated approximation going bey
the HF approximation would produce such mode soften
~see the discussion in the following sections!. Note that the
charge collective-mode energy in the long-wavelength li

FIG. 6. Same as Fig. 5, but for spin modevs1
(qW') dispersion.
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is exactly the same as the noninteracting energy separa
v251.72 meV, in Fig. 4, for results calculated in both th
first-order HF approximation and the SCHFA, within a 3
numerical error. As should be obvious from our results, th
is no qualitative difference whatsoever between the result
these two approximations, which is not unexpected. The
fore, from now on, we will only show results obtained in th
first-order HF approximation, not only because of its comp
tational simplicity ~saving considerable time in numeric
calculations!, but also because, as mentioned in Sect
III E, we believe that the leading-order HF calculation is r
ally more consistent with our TDHFA theory for the colle
tive modes.

In Figs. 5 and 6 we show, respectively, the charge a
spin mode dispersions forn52, 4, 6, and 8 system by
changingB' ~total electron density is fixed! with all other
parameters the same as in Fig. 4. The RPA peak is relati
weaker in stronger perpendicular magnetic field~smallern),
while it is more pronounced when more Landau levels
occupied~largern). On the other hand, the energy differen
between the long-wavelength limit@which is just the nonin-
teracting energy gapv2, according to Eq.~54!# and the roton
minimum of the charge mode excitation is larger for smal
n ~strongerB') system. This indicates that the multiple a
sorption peaks observed in the polarized inelastic lig

FIG. 7. Charge mode dispersion of magnetoplasmon excita
of the same system as used in Fig. 4 but with different confinem
energyv0 at filling factor, n56. Zero field well widths are abou
260, 200, 175, and 155 Å, corresponding tov057, 11, 15, and 19
meV, respectively. The parallel magnetic field is 11 T for all resu
4-15
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scattering experiment34 should be separated more widely f
smaller n ~stronger B'). For the spin mode excitation
shown in Fig. 6, the results for different filling factors a
quite similar, except for their differentqy* ~i.e., the position
of the magnetoroton minima! due to different perpendicula
magnetic-field values.

In Figs. 7 and 8 we show, respectively, the charge a
spin mode dispersions forn56 system but with different
confinement energy,v0, as indicated in the figures. Large
confinement energies indicate smaller well widths in thz
direction. Therefore we have a continuous ‘‘transition’’ fro
three dimensions to two dimensions by increasingv0 at a
fixed density. This transition is observed clearly in Figs
and 8 where the spectra in thex andy directions become very
similar for higher values ofv0, reproducing the zero width
~strictly 2D! results.11 On the other hand, the roton minimum
energy of thevs1

mode decreases for weaker confinem
potential ~larger effective well width!, showing more of a
tendency to have a spin-density-wave instability in a wid
well. Another important feature can be seen in the cha
mode dispersion. When the confinement potential is w
~e.g., v057 meV), the energy of the rotonminimum
smaller than the mode energy in the long-wavelength li
(qW'50). But the roton energy becomes larger than the lo
wavelength mode energy when the confinement potentia
increased tov0519 meV, reproducing the results of th
pure 2D system,10 where the roton minimum is typically at
higher energy than the long-wavelength mode energy. Th

FIG. 8. Same as Fig. 7, but for spin mode dispersion.
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fore the finite width effect also enhances the tendency o
charge-density-wave instability against the ground state.

In Fig. 9 we show a typical singlet charge-density ma
netoplasmon mode (vr) dispersion ofn51 as an example o
odd filling factors in TDHFA. Forn51, there will be no
first-order phase transition by Landau-level crossing inany
strength of in-plane magnetic field. WhenBi is more than 30
T, we find a charge-density-wave instability at a finite wa
vector perpendicular to the in-plane magnetic field. Mo
detailed Hartree-Fock analysis shows that35 this CDW is a
kind of isospin skyrmion stripe, which has a charge-dens
modulation in thex-y plane as discussed in Sec. V.

As a final remark, we note that Eqs.~39! and ~40! are
based on TDHFA, which is exact only to the lowest order
the ratio of interaction energy to noninteracting energy g
@(e2/e0l 0)/v2#. Therefore it isa priori not clear if this
leading-order many-body approximation can be used
study the mode softening phenomena near level cross
where the interaction energy is necessarily comparable to~or
stronger than! the noninteracting level separation since t
noninteracting levels becomes degenerate at the cri
point. However, to the best of our knowledge, no other s
tematic reliable technique is available to calculate
collective-mode energy and such a mode softening beha
was earlier successfully treated within the TDHFA in t
context of the second-order phase transition related to

FIG. 9. Charge mode magnetoplasmon dispersions forn51,
B'53 T, andv053 meV, calculated in the TDHFA. Solid, dotted
and dashed lines are forBi520, 25, and 30 T, respectively, showin
a charge mode softening iny direction, perpendicular to theBi
direction.~a! and~b! are for wave vectors alongx andy directions,
respectively.
4-16



g
li
d
c-
g

es
d

tic
u

ng
n
s
on
a

n
ou
o
il
lc

is
a
ve

ef
th
de

ne
-

ll,
tera-

of
an

he
e
ply
re
ms
-

ld
W
ion
he

ote
be

ties
-
pe-

el-
t

le-

th

ob-
ting
the
per-
in

ed

ub
of
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canted antiferromagnetic phase of a double layer system
the presence of interlayer tunneling and Zeeman splittin4

Therefore we believe our results should be qualitatively va
in the level crossing regime. We do not, however, exclu
the possibility that correctly including higher-order intera
tion effects may very well reduce the roton-minimum-ener
zero at a finite wave vector before the system undergo
first-order phase transition to a polarized ground state. We
not know how to go beyond the TDHFA in a systema
current-conserving manner but speculate that such a calc
tion may very well give rise to a finite wave-vector softeni
of the magnetoroton producing a quantum phase transitio
the symmetry-broken phase. Our speculation is partly ba
on our finding that TDHFA actually predicts such a transiti
at Bi5Bi* which happens to be sightly larger than the critic
field for the first-order transition.

IV. SCREENING EFFECTS

In the TDHFA shown in the previous sections, electro
electron interaction is the bare Coulomb interaction with
taking into account screening effects from the electron-h
fluctuations in the Landau levels. In this section, we w
incorporate screening effects in our magnetoplasmon ca
lations. Actually, in Eqs.~39! and ~40!, a complete formula
for the dielectric function in TDHFA has been given, but th
formula is in general too complicated to be widely used in
integer quantum Hall system. In this section we will deri
some convenient formulas for the dielectric functione(qW ,v)
in different reasonable limits. Including such screening
fects in the bare Coulomb interaction one may study
magnetoplasmon excitations beyond the time-depen
Hartree-Fock approximation, where the interaction used
the Green’s function and vertex function is the unscree
one @see Figs. 2 and 10~a! and ~b!#. For convenience of dis

FIG. 10. ~a! The screened exchanged energy and~b! the
screened ladder diagrams used in the screened TDHFA develop
Sec. IV ~see Fig. 2!. The interaction lines of the direct~Hartree!
energy and the RPA diagrams are not screened to avoid do
counting.~c! A diagram not included in the screened TDHFA but
the same order as a screened ladder diagram shown in~b!. All
notations are the same as those in Fig. 2.
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cussion, we will first show the results for a zero width we
the system most theoretical researchers consider in the li
ture, and then the screening results for the WWW system
interest to us. It is shown below that for a ZWW, we c
obtain a ‘‘scalar’’~not matrix! dielectric function including
both RPA and ladder diagrams shown in Fig. 2~c! in TDHFA,
i.e., the screening effect in a ZWW is independent of t
level index within TDHFA. This result is valid beyond th
pure RPA result proposed before in Ref. 36 and should ap
even at low density, where only a few Landau levels a
occupied, because of the inclusion of the ladder diagra
~left out in Ref. 36!. For a WWW, instead of using the com
plete result shown in Eqs.~39! and ~40!, we will derive a
conventional formula in the strong parallel magnetic-fie
region, which in some sense is effectively similar to a ZW
system as mentioned in Sec. II A. An analytical express
for the dielectric function can be obtained when only t
RPA screening is considered~neglecting ladder diagrams!
and is a good approximation for high-density systems. N
that these general formulas of screening effects could
used to study other interaction-induced electronic proper
of quantum Hall systems,32,37and are therefore of broad gen
eral interest in quantum Hall problems transcending the s
cific applications we are dealing with in this paper.

A. Screening in a zero width well

For a strictly 2D ZWW one can neglect thez degree of
freedom completely, and therefore the interaction matrix
ement of Eqs.~20! and~31! can be simplified to the produc
of Coulomb interaction and the functionAnm

2D(q):

Un1n4 ;n2n3

2D ~qW'!5V2D~qW'!An1n4

2D ~2qW'!An2n3

2D ~qW'!

5V2D~q!An1n4

2D ~q!An2n3

2D ~q!, ~57!

where V2D(qW')[(2p l 0
2Lz)

21*dqz V(qW' ,qz) is the two-

dimensional Coulomb interaction andAninj

2D (qW')5Aninj

2D (q) is

obtained by using the standard Landau-level 2D sing
particle wave function in a n integral similar to Eq.~21!. Its
explicit formula can be obtained by taking the zero wid

limit ( v0→`) of the functionAninj

(0) (qW ) in Appendix C. Note

that in such a pure 2D system, electron wave functions
tained by SCHFA are exactly the same as the noninterac
wave functions, so that the results in the SCHFA and in
first-order HFA are the same in this case. We use the su
script, ‘‘2D’’ to denote pure two-dimensional quantities
the zero well width limit, and replaceqW' by its absolute
valueq in Eq. ~57! due to the rotational symmetry in thex-y
plane in the 2D limit.

in

le
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Applying Eq. ~57! to Eqs.~38! and ~39!, one obtains im-
mediately

Ũn1n4 ,n2n3

2D ~v,q!

5Un1n4 ,n2n3

2D ~v,q!S 12V2D~q! (
mamb

Ambma

2D ~q!

3 (
mmmn

@Ymamb ,mmmn

2D ~v,q!#21Ammmn

2D ~q! D , ~58!

where the matrixY2D(v,q) is of the same form asY(v,q)
in Eq. ~40!, but now with two-dimensional interactio
matrix elements. The dielectric function for a ZWW syste
is therefore a scalar function and independent of the le
index:
el

e2D~v,q!5S 12V2D~q! (
mamb

Ambma

2D ~q!

3 (
mmmn

@Ymamb ,mmmn

2D ~v,q!#21Ammmn

2D ~q! D 21

,

~59!

and the corresponding irreducible polarizabilityP irr
2D(v,q)

can be easily obtained by usinge2D(v,q)51
2V2D(q)P irr

2D(v,q). Note that when the spin degree o
freedom is considered in Eq.~59!, all electron-hole pair
fluctuations involved ine2D(v,q) should be non-spin-flip
pairs because Coulomb interaction does not flip elect
spin.

It is instructive to study the forms for the dielectric fun
tion in some special limits. First, in the low-frequency r
gion, where only fluctuations like (N,↓)→(N11,↓) and
(N,↑)→(N11,↑) are relevant, we can use the 232 matrix
of Yr(v,q) in Eq. ~42! to express the dielectric function i
the lowest order of (e2/e0l 0)/v2:
.
ll
e2D~v→0,q!;S 12V2D~q!uAN,N11
2D ~q!u2(

i , j
@Yi , j

2D~v,q!#21D 21

5S 12
2V2D~q!uAN,N11

2D ~q!u2

DENN11
↓↓,2D 2UNN,N11N11

bind,2D ~q!12UNN11,N11N
2D ~q!1 iv

D 21

5
vr

2D~q!1 iv

vsz

2D~q!1 iv
, ~60!

where we have used the fact thatDEnn11
↓↓,2D5DEnn11

↑↑,2D for systems with even filling factors in the unpolarized ground state
Another good approximation for the dielectric function of Eq.~59! can be obtained in the high-density limit, where it is we

known that the contribution of RPA diagrams dominates that of ladder diagrams in the correlation energy.28 Starting from Eqs.
~33! and~34! and using iterations with Eq.~57! to representWmamb ,mnmm

2D (q), which is now the same asUmamb ,mnmm

2D (q), we

have

Ũn1n4 ,n2n3

2D ~q,v!;Un1n4 ,n2n3

2D ~q!1Un1n4 ,n2n3

2D ~q! (
mamb

Umamb ;mbma

2D ~q!Dmamb

2D ~v!

1Un1n4 ,n2n3

2D ~q! (
mamb

Umamb ;mbma

2D ~q!Dmamb

2D ~v!• (
mmmn

Ummmn ;mnmm

2D ~q!Dmmmn

2D ~v!1•••

5Un1n4 ,n2n3

2D ~q!F12 (
mamb

Umamb ;mbma

2D ~q!Dmamb

2D ~v!G21

. ~61!
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After retrieving the spin index, we obtain

eRPA
2D ~v,q!512 (

mamb

Umamb ;mbma

2D ~q!Dmamb

2D ~v!

511V2D~q!

3(
s

(
m50

Ns

(
n5Ns11

`
2~En,s2Em,s! v'

~En,s2Em,s!21v2

3
m!

n! S q2l 0
2

2 D n2m

e2q2l 0
2/2FLm

n2mS q2l 0
2

2 D G2

,

~62!

which is the same as the result in Ref. 36~using the identity:
Ln1m

2m (x)5(21)m@n!/(n1m)! #xmLn
m(x)…, if we neglect the

self-energy correction in the single-particle energyEns ,s @so

thatEns ,s5Ens ,s
0 5(ns11/2)v'2svz]. Note that the RPA

result shown in Eq.~62! includes the dressed single-partic
Green’s function via the Fock self-energy correlation~the
Hartree term is canceled!, but it sums over all empty and
filled levels and is therefore actually beyond the valid
range of TDHFA which neglects multiexciton effects. Bo
Eqs.~59! and~62! above are independent of the parallel~in-
plane! magnetic field in the strict 2D limit, since the parall
magnetic field only affects the Zeeman energy in the st
2D limit ~and not any aspects of the orbital motion!. How-
ever, the parallel field does, as expected, affect the diele
function in a finite width well as shown below.
e
-
n
a

19533
t

ric

B. Screening in a wide quantum well

For a WWW~specifically a parabolic WWW for our cal
culations!, Eqs.~39! and ~40! show that the dielectric func
tion is a matrix function strongly dependent on the lev
index of the interaction matrix element. In general, the
expressions are not convenient for applications in differ
physical problems, and therefore we have to look for a go
approximation for Eq.~39!. First we could get a good low
frequency approximation for the dielectric function by tru
cating the matrix size of Eq.~39! into 232 and applyingYr

of Eq. ~42!, i.e., considering electron-hole fluctuations on
between the two nearest levels about the Fermi level.
result is similar to Eq.~60!:

eN,N11~v→0,qW'!;
vr~qW'!1 iv

vsz
~qW'!1 iv

, ~63!

wherevsz
(qW') andvr(qW') are given by Eqs.~45! and~46!,

respectively. The difference between Eq.~60! for a ZWW
system and Eq.~63! for a WWW system is that the forme
can be used for interaction between electrons in any Lan
levels, while the latter is correct only for electrons interacti
between„N,↑(↓)… and„N11,↑(↓)… levels in the low-energy
region of an unpolarized ground state. When consider
higher energy excitation, say electrons fromN22 level to
level N11, a larger matrix representation for theYr matrix
has to be used to get a self-consistent result, but it m
exceed the validity region of TDHFA. It is instructive t
check the asymptotic approximation of Eq.~63! in the static
long-wavelength limit by using Eqs.~45!, ~46!, and~54!:
eN,N11~0,qW'→0!→
v21SN11

HF 2SN
HF2UNN,N11N11

bind ~qW'→0!12UNN11,N11N~qW'→0!

v21SN11
HF 2SN

HF2UNN,N11N11
bind ~qW'→0!

5
v2

v21SN11
H 2SN

H
.1. ~64!
q.
ng

wo
ffec-

ell
Note thateN,N11(0,0W ) does not go to unity because of th
finite direct ~Hartree! self-energy term, showing a 3D prop
erty. In a ZWW, however, the Hartree self-energy is a co
stant independent of the level index, and therefore is c
celed with each other in Eq.~64!. When taking the large

momentum limit (uqW'u→`),eN,N11(0,qW')→1 for vr(qW')

2vsz
(qW')→0.
-
n-

As in the ZWW, a scalar dielectric function similar to E
~59! can be obtained for a WWW system subject to a stro
in-plane magnetic field. The similarity between these t
systems is because the strong in-plane magnetic field e
tively enhances the electron confinement energy of the w
~note thatvb5Av0

21v i
2 and see Sec. II A!. We start from

the following general approximation@we use number labels
~e.g., 1,2•••) and Greek labels~e.g.,a,b•••) to replace the
level indices,n1,2 •••

andma,b••• for simplicity#:
4-19
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whereCab
23 (qW' ,qz8 ,qz9) has been approximated by its zerot

order value

Cab
23 ~qW' ,qz8 ,qz9!;11O~v' /vb!, ~66!

according to the explicit expression ofAab(qW ) shown in Ap-
pendix C. Therefore the TDHFA screening similar to E
~59! for a WWW system could be obtained approximately

«~v,qW'!;S 12(
ab

(
mn

@Yab,mn~v,qW'!#21Umn,ab~qW'! D 21

.

~67!

Similarly the high-density approximation with RPA diagram
only can also be obtained by using the same approximat
«RPA~v,qW'!;11
1

2p l 0
2 (

s
(

m50

Ns

(
n5Ns11

`
2~En,s2Em,s! v2

~En,s2Em,s!2v2
21v2

•

1

Lz
(
pz

V~qx ,qy ,pz!
m!

n!

3expF2
cos2u~qyl 0!21~cosuqxl 02sinupzl 0!2l1

2

2l1
GexpF2

sin2u~qyl 0!21~sinuqxl 01cosupzl 0!2l2
2

2l2
G

3S sin2u~qyl 0!21~sinuqxl 01cosupzl 0!2l2
2

2l2
D n2mFLm

n2mS sin2u~qyl 0!21~sinuqxl 01cosupzl 0!2l2
2

2l2
D G2

.

~68!
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Comparing results of Eq.~62! for a ZWW and Eq.~68! for a
wide ~parabolic! well, we find that the finite width effec
enhances the anisotropy of the dielectric function through
coupling ofx andz components of wave vectors. Note th
Eqs.~63!, ~67!, and~68! show no screening in thez direction
because we have integrated out thez component in the inter-
action matrix element by the single-particle wave functio
in Eq. ~20! and have assumed the level index dependenc
the dielectric function to be unimportant@see Eq.~66!#. We
believe that this is a good approximation for strong in-pla
magnetic fields~see Fig. 1!, so that there is no appreciab
static or dynamical polarization in thez direction to screen
the Coulomb interaction. This approximation certainly fa
when one wants to study excitations between levels of
different subbands in a weak in-plane field region.

C. Numerical results

In this section, we show some numerical results of
collective-mode energies including the screening effect.
convenience, we choose the dielectric function shown in
e

s
of

e

o

e
r

q.

~68! and consider static screening (v50) only. Therefore
the algebraic matrix equations of Eqs.~38!–~40! are all of
the same form except the Coulomb interaction is replaced
the screened one,V(qW )/eRPA(qW',0). However, the interac-
tion of the RPA energy in Eq.~37! and the Hartree self-
energy are not screened in order to avoid double countin
bubble diagrams@see Figs. 10~a! and~b!#. We note that such
screened TDHFA isnot a strictly current-conserving approx
mation, because some other diagrams@for example, see Fig
10~c!# are not included, which may contribute to the sam
higher-order effects as the screening bubbles. Therefore
can only estimate the screening effect to the magnetop
mon energy qualitatively rather than quantitatively in o
present study.38

In the presence of screening, the first-order phase tra
tion pointBi* moves higher values~see the fourth column o
Table I! because the exchange interaction strength is
duced. This allows us to investigate the magnetoplasm
mode dispersion at higher values of in-plane magnetic fi
without changing the ground-state configuration~i.e., avoid-
4-20
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ing the trivial first-order transition!. In Fig. 11 we show the
static dielectric functione(v50,qW') obtained by Eq.~68! in
RPA for two different values of in-plane magnetic field
n56. For a stronger in-plane field, the screening effec
also stronger and more anisotropic. The anisotropic dielec
function shows that interaction along thex direction~parallel
to the in-plane field! is screened more than the interacti
along they direction ~perpendicular to the in-plane field!.

In Fig. 12 we show calculational results of the char
(vr) and spin (vs1

) mode magnetoplasmon dispersions
cluding RPA screening effects~dashed lines! with other pa-
rameters the same as Fig. 4. For comparison, the unscre
results ~dotted lines! and the screened results with high
in-plane magnetic field~solid lines! are shown together in th
same figure. Comparing unscreened and screened resu
Bi511 T ~dotted and dashed lines respectively!, one can find
that the screening effect does lower magnetoplasmon e
gies for both charge and spin modes in the largeuqW'u region
due to the shrinking of Fock self-energy. But this effect
relatively weaker in the long-wavelength limit~small uqW'u
limit ! due to the cancellation between the Fock self-ene
and the electron-hole binding energy~the generalized Kohn’s
theorem!. In the intermediateuqW'u region, the roton mini-
mum becomes less prominent than the unscreened result
the dispersion becomes flat. Therefore, fixing all the ot
system parameters, the screening effect is not very impor
in determining the roton-minimum energy. On the oth
hand, as mentioned above, the screening effect reduce
electron self-energy and increases the critical value ofBi for
the unpolarized-to-polarized first-order phase transiti
Therefore one can, in the presence of screening, calculat
screened collective mode at higher in-plane magnetic fi
based on the same unpolarized ground state since the
order transition is now pushed to higher fields. In Fig. 12
show the result of magnetoplasmon dispersion calculate
Bi512 T ~solid lines!. The roton minimum of the spin col
lective mode (s1) becomes lower than 0.1 meV, showing
almost mode softening at finite wave vector along the dir
tion perpendicular to the in-plane magnetic field. Our resu

FIG. 11. Static dielectric function in momentum space
n56 and v057 meV. Solid and dashed lines represe
e(qx ,qy50) and e(qx50,qy), respectively. Thick and thin lines
are forBi511 and 8 T.
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therefore indicate that inclusion of screening effect, as w
as lowering the confinement potential and increasing
electron density, could help to stabilize a new anisotro
ground state with broken translational and spin symmet
associated with the softening of the spin collective mo
Such a symmetry-broken phase may very well be the ca
for transport anisotropy observed in Ref. 7.

V. DISCUSSION

In this section, we briefly discuss the possible phases
this new ground state based on our collective-mode calc
tion results shown above. More detailed theoretical results
these exotic quantum phases will be given elsewhere.35 Simi-
lar to a DQW system,27 where the layer index is treated as a
isospin degree of freedom, the level index of the closest
levels around the Fermi level can be used to construct
isospin ~here it is also one-to-one related to a real sp!
space, and create a coherent wave function for the poss
new ground state in a single Slater determinant,

uC1&5)
k

S eikQxl 0
2
cos

wk

2
cN,k2Qy/2,↓

†

1e2 ikQxl 0
2
sin

wk

2
cN11,k1Qy/2,↑

† D u0&, ~69!

t

FIG. 12. Dispersions of magnetoplasmon excitations forn56 in
both charge (r) and spin (s1) modes including RPA screening@Eq.
~68!# of the Coulomb interaction forBi511 and 12 T~dashed and
solid lines, respectively!. Results of unscreened dispersion are a
shown~dotted lines, the same as Fig. 4! for comparison.
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wherecn,k,s
† creates an electron in statefn,k,s(rW ) with spins,

and u0& denotes the ground state withN11 filled Landau
levels of spin up andN levels of spin down. We consider si
different phases constructed from Eq.~69!, corresponding to

different variational parameterswk andQW . Whenwk is con-
stant, the wave function of Eq.~69! can describe three non
stripe phases:~i! a fully ~un!polarized uniform quantum Hal
phases forwk5(0)p, ~ii ! a simple interlevel coherent phas

for QW 50 andwkÞ0,p, and ~iii ! a spiral phase for finiteQW

and wkÞ0,p. When wk changes periodically withk, three
different kinds of stripe phases arise:~i! simple stripe phase
for QW 50, which has no spiral structure,~ii ! skyrmion stripe
phase for finiteQW , butQW'n̂, wheren̂ is the normal vector of
the stripe formation. Such a skyrmion stripe phase has b
charge and spin modulation in different directions, and the
fore has finite topological charge-density oscillation in re
space;27,35,39~iii ! spiral stripe phase for finiteQW with QW i n̂.
This spiral stripe phase has charge and spin modulatio
the same direction but no topological charge oscillation
real space. We should point out that the wave function of
~69! is based on a special choice of Landau gaugeAW
5(0,B'x2Biz,0), and therefore gives the stripe directio
along y, i.e., perpendicular to the in-plane magnetic fie
Choosing another kind of Landau gauge, where electron
mentum is conserved alongx, AW 5(2B'y,2Biz,0), we can
construct a stripe alongx direction and the noninteractin
Hamiltonian can be solved exactly by a canonic
transformation.35 Then one can write the trial wave function
of these different phases and obtain their energies in Hart
Fock approximation. The one of the lowest energy sta
should be the ground state near the degeneracy pointBi
5Bi* . Details will be presented elsewhere.35

On the other hand, the magnetoplasmon excitation spe
we obtain in previous sections also gives us important in
mation about the new ground state near the degene
point. First, the asymmetry of spin-density mode inx andy
direction and the near mode softening iny direction ~shown
in Fig. 4! strongly indicate that the new symmetry-brok
ground state, if it exists, should have a spin spiral structur
finite wave vector iny direction. This may be a spiral spin
density wave, when only one of the ordering wave vect
6(0,qy* ) is present, or a collinear spin density wave, wh
there is ordering at both wave vectors with equal amplitud
The former can be visualized as a spin-density wave wh
electron spin has a spiral structure around the total magn
field direction in order to optimize the exchange ener
Therefore collinear spin-density wave, spiral, skyrmi
stripe, and spiral stripe phases are the possible candidate
the symmetry-broken phase. As for the existence of any p
sible charge-density wave instability, we could not obta
much information from our collective-mode calculation
TDHFA. But it is apparently true that interaction effects a
more important for stronger in-plane magnetic fields, wh
the noninteracting energy separationv2 becomes very small

Considering the experimental results,7 where the resis-
tance along the in-plane magnetic field becomes finite w
the in-plane magnetic field exceeds a critical value, we fi
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that the stripe formation, if it exists, should be along t
direction perpendicular to the in-plane magnetic field~i.e., its
normal wave vector is in thex direction! to produce such a
transport anisotropy. Using the above result that the sp
density modulation has a wave vectorqy* in the y direction,
we find that only the skyrmion stripe phase is consistent w
all of these constraints and should be the best candidate
the new ground state. Although our Hartree-Fock calculat
shows that the spiral phase has slightly lower energy than
skyrmion stripe phase,27 we believe that this may be due t
the nonparabolicity of a realistic WWW or the correlatio
effects not included in our HF approximation. We therefo
speculate that the anisotropic ground state observed in R
is our proposed spin skyrmion stripe phase. This may also
true for the transport anisotropy earlier observed40 in Si
based 2D systems, but the additional complications of va
degeneracy in Si makes the application of our theory m
different.

VI. SUMMARY

We study the magnetoplasmon excitations of a parab
quantum well system in a tilted magnetic field. Starting fro
the many-body theory in coordinate space, we integrate
the continuous variable and obtain an algebraic matrix r
resentation of the dielectric function and hence the magn
plasmon mode dispersion in TDHFA. Focusing on even fi
ing factors, a roton minimum near zero energy in the s
channel is observed at finite wave vector along the direc
perpendicular to the in-plane magnetic field. By changing
confinement potential, we have a continuous transition fr
a 3D plasmon excitation to the pure 2D results in our cal
lation. Including the screening effect, which is another i
portant part of our work, we find that the roton-minimu
energy could be even more suppressed. Although it does
reach zero energy before possibly undergoing a first-or
phase transition from an unpolarized ground state to a po
ized one, its small excitation energy at finite wave vec
suggests a possible spin-density instability to an exo
symmetry-broken ground state in realistic systems. We
cuss various phases that may result and propose that th
cent transport anisotropy measurement in experiments7 can
be explained by a skyrmion stripe phase, where spin-
charge-density modulations are in different directions. T
theoretical technique used in this paper could also be use
study other quantum Hall systems in quasi-2D quantum w
nanostructures. In particular, our screening theory is m
complete than the existing theory, and should have wide
plicability. Finally we point out that our predicted collective
mode dispersion may be directly verified via the inelas
light-scattering spectroscopy.
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APPENDIX A: SELF-CONSISTENT HARTREE-FOCK EQUATIONS

In this section we derive the self-consistent Hartree-Fock equations for the single-particle wave functions. Starting f
~10!, we can use a Fourier transform ofV(rW) to obtain

EnW ,sfnW ,k,s~rW !5FH01
1

V (
qW

V~qW ! (
mW ,p,s

nm,p,sE drW 8e2 iqW •rW8fmW ,p,s
†~rW8!fmW ,p,s~rW8!eiqW •rWG

3fnW ,k,s~rW !2
1

V (
qW

V~qW !E drW 8e2 iqW •rW8fnW ,k,s~rW8!(
mW ,p

nmW ,p,sfmW ,p,s
†~rW8!eiqW •rWfmW ,p,s~rW !

5FH01
1

V (
qW

V~qW ! (
mW ,p,s

nm,p,sdqy,0e
i (p1qy/2)qxl 0

2
AmW mW

s,s
~qW !eiqW •rWGfnW ,k,s~rW !

2
1

V (
qW

V~qW !(
mW ,p

nmW ,p,sdk2p,qy
ei (p1qy/2)qxl 0

2
AmW ,nW

s,s
~qW !eiqW •rWfmW ,p,s~rW !, ~A1!
.
a

n

ave

e

ion:
where the form functionAmW ,nW
s,s(qW ) has been defined in Eq

~21!. Assuming a uniform ground state, we can separ
fnW ,k,s(rW) into a product of a plane wave,eiky/ALy, and the
function, FnW ,s(x1kl0

2 ,z), which satisfies the following ei-
genvalue equation:

EnW ,sFnW ,s~x,z!

5FH01
1

2p l 0
2Lz

(
qz

V~qz! (
mW ,s8

nmW ,s8AmW mW
s8s8~qz! eiqzzG

3FnW ,s~x,z!2
1

V (
qW

V~qW !(
mW

nmW ,s e2 iqxqy/2AmW nW
ss

~qW !

3eiqxx1 iqzzFmW ,s~x2qyl 0
2 ,z!, ~A2!

wherenmW ,s is the filling factor of Landau levelmW and spin
s, satisfying

n5(
mW ,s

nmW ,s , ~A3!
19533
te

to conserve the total electron density.
Now we expandFnW ,s(x,z) in terms of noninteracting

wave functions with the same spin@note thatV(rW) allows no
spin flip, so thats is conserved and no spin hybridizatio
occurs#:

FnW ,s~x,z!5^x,zunW ,s&5(
mW

^x,zumW ,s&0 0^mW ,sunW ,s&, ~A4!

whereu•••&0 represents a noninteracting eigenstate. We h

AmW nW
ss

~qW !5E dxE dz e2 iqxx2 iqzzFmW ,s
†

~x2qyl 0
2/2,z!

3FnW ,s~x1qyl 0
2/2,z!

5(
lW1

(
lW2

^mW ,su lW1 ,s&0 0^ lW2 ,sunW ,s&AlW1 , lW2

(0),ss
~qW !.

~A5!

Using Eq.~A5! and multiplying by the noninteracting wav
function from the left of Eq. ~A2!, we have the self-
consistent Hartree-Fock equation in a matrix representat
EnW ,s 0^nW 8,sunW ,s&5(
mW 8

FEmW 8,s
0 dnW 8,mW 81

1

2p l 0
2Lz

(
qz

V~qz! (
mW ,s8

nmW ,s8

3(
lW1

(
lW2

^mW ,s8u lW1 ,s8&0 0^ lW2 ,s8umW ,s8&AlW1 , lW2

(0),s8s8~qz!AnW 8,mW 8
(0),ss

~2qz!G 0^mW 8,sunW ,s&

2(
mW 8

1

V (
qW

V~qW !(
mW

nmW ,s(
lW1

(
lW2

^mW ,su lW1 ,s&0 0^mW 8,sunW ,s&AlW1 ,mW 8
(0),ss

~qW !AnW 8, lW2

(0),ss
~2qW ! 0^ lW2 ,sumW ,s&

5(
mW 8

FEmW 8,s
0 dnW 8,mW 81 (

mW ,s8
nmW ,s8(

lW1

(
lW2

^mW ,s8u lW1 ,s8&0 0^ lW2 ,s8umW ,s8&

3$UnW 8,mW 8; lW1 , lW2

(1),ss8 ~0W'!2UnW 8, lW2 ; lW1 ,mW 8
(1),bind,ss

~0W'!ds,s8%G 0^mW 8,sunW ,s&, ~A6!
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where we have used Eqs.~50! and~51! to express the direc
and the exchange potential. Equation~A6! is the matrix rep-
resentation of the Hartree-Fock Hamiltonian in our syste
which should be solved self-consistently to get the ene
eigenstate via vector elements0^mW ,sunW ,s&.

Another expression for the eigenenergies can be obta
directly from Eq. ~A2!, by integrating another eigenke
FnW ,s(x,z) from the left. We obtain

EnW ,s5EmW 8,s
0

1
1

2p l 0
2Lz

(
qz

V~qz! (
mW ,s8

nmW ,s8AmW mW
s8s8~qz!

3AnW nW
ss

~2qz!2
1

V (
qW

V~qW !

3(
mW

nmW ,sAmW nW
ss

~qW !AnW mW
ss

~2qW !,

5EmW 8,s
0

1 (
mW ,s8

nmW ,s8$UnW ,nW ;mW ,mW
ss8 ~0W'!

2UnW ,mW ;mW ,nW
bind,ss

~0W'!ds,s8%, ~A7!

whereUnW ,nW ;mW ,mW
ss8 (0W') and UnW ,mW ;mW ,nW

bind,ss(0W') are those defined in
Eqs.~36! and ~37!.

Using this self-consistent Hartree-Fock equation, E
~A6!, it is also easy to include any nonparabolic effects of
realistic confinement potentialU(z). Assuming the deviation
of the realisticU(z) from a parabolic one,Up(z), to be
small, i.e., uDU(z)5U(z)2Up(z)u!v0, we can calculate
its matrix element,

^nW 8,suDU~z!umW 8,s&

5E dxE dzFnW 8~x,z!DU~z!FmW 8~x,z!

5E dxE dzFnW 8~x,z!F 1

Lz
(
qz

DU~qz! eiqzzGFmW 8~x,z!

5
1

Lz
(
qz

DU~qz!AnW 8mW 8~0W' ,2qz!

5
1

2pE dqzDU~qz!AnW 8mW 8~0W' ,2qz!. ~A8!

and incorporate it in Eq.~A6! to calculate the self-consisten
Hartree-Fock eigenenergies and eigenfunctions. In all
numerical work presented in this paper, however, we h
takenU(z) to be parabolic throughout.

APPENDIX B: MAGNETOPLASMON EXCITATION
ENERGY THROUGH THE MAGNETIC EXCITON

WAVE FUNCTION

In this section we show that the magnetoplasmon exc
tion energies both in a thin 2D~ZWW! well in only a per-
pendicular magnetic field~situation discussed in Ref. 11! and
in a wide parabolic well with a tilted magnetic field~situa-
19533
,
y

ed

.
e

ur
e

-

tion discussed in this paper! can be written in a simple and
instructive form by using exciton wave functions proposed
Ref. 11 and its appropriate WWW generalization construc
in our Eq. ~18!, respectively. For the first case, we take t
static exciton wave function suggested by Kallin and Ha
erin in Eq.~2.9! of Ref. 11 and set the center- of-mass co
dinate and the total momentum of excitons to be zero:

Cnb ,na

2D ~Dx,Dy![E dhe2 ihDy/ l 0
2
cnb

(0)~h1Dx/2!

3cna

(0)~h2Dx/2!, ~B1!

whereDx and Dy are the relative coordinates between t
hole in a filled level~denoted byna5n) and the electron in
an empty level~denoted bynb5na1m); cn

(0)(x) is the
wave function of one-dimensional single harmonic oscilla
as shown in Eq.~8! with l i replaced byl 0. In the lowest
order of (e2/e l 0)/v' , there are four distinct contributions t
the magnetoplasmon excitation energies: noninteracting
ergy separation, exciton binding energy, RPA energy, a
exchange self-energy,11

vmn,r
2D ~q!5mv'2vz~sb2sa!1DEbind

mn ~q!1DERPA
mn ~q!

1DEexch
mn , ~B2!

where the last three terms can be re-expressed in term
Cnb ,na

2D as follows:

DEbind
mn ~q!52

1

2p l 0
2E dDrW'V2D~DrW2 l 0

2qW'3 ẑ!

3uCn1m,n
2D ~DrW'!u2 ~B3!

DERPA
mn ~q!5

2V2D~q!

2p l 0
2

uCn1m,n
2D ~2qyl 0

2 ,qxl 0
2!u2 ~B4!

DEexch
mn 5Sn1m

F 2Sn
F5

21

2p l 0
2E dDrW'V2D~DrW'!

3FCn1m,n1m
2D ~DrW'! (

l<Nsb

C l ,l
2D* ~DrW'!

2Cn,n
2D ~DrW'! (

l<Nsa

C l ,l
2D* ~DrW'!G , ~B5!

whereNsa(b)
is the level index of the highest occupied La

dau level with spinsa(b) . Interpretation of the formulas in
Eqs. ~B3! and ~B4! is straightforward. The binding energ
integrates over relative positions of electron and hole in
exciton, whereas the RPA term involves electron and h
annihilating each other and is proportional to the probabi
of finding two particles at the same position.DEexch

mn in Eq.
~B5! is the difference of exchange self-energies between
two relevant levels, and indicates the relative many-bo
level shift. The exchange self-energy of leveln, Sn

F , ex-
pressed in Eq.~B5! can be understood as the integral ov
4-24
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relative positions of electrons between leveln and the lower
levels l of the same spin. Note thatvmn

2D(qW'50)5mv' for
m51 in the charge mode channel, satisfying Kohn
theorem41 for this ZWW system. The equivalence betwe
above expressions and the results in Ref. 10 can be e
seen by direct substitution.

For a parabolic well, the magnetoplasmon energy
pressed by the magnetic exciton wave function@see Eq.~18!#

can be obtained by using similar notations as above~let nW a

5nW and nW b5nW 1mW to denote the hole and electron lev
indices!:

vmW nW ,r~qW'!5DEab
0 1DEbind

mW nW ~qW'!1DERPA
mW nW ~qW'!1DEexch

mW nW

1DEdirect
mW nW , ~B6!

whereDEab
0 5m1v11m2v22vz(sb2sa) is the noninter-

acting energy gap between the two levels, and

DEbind
mW nW a ~qW'!52

1

2p l 0
2E dDrWV~DrW2 l 0

2qW'3 ẑ!

3E dZuCnW b ,nW a
~Dx,Dy,Z,Dz!u2, ~B7!

DERPA
mW nW a ~qW'!5

2

2p l 0
2E dDrWV~DrW !ei (qxDx1qyDy)

3E dZCnW b ,nW a
~2qyl 0

2 ,qxl 0
2 ,Z1Dz/2,0!

3CnW b ,nW a
* ~2qyl 0

2 ,qxl 0
2 ,Z2Dz/2,0!, ~B8!

DEexch
mW nW a 5

21

2p l 0
2E dDrWV~DrW !E dZFCnW b ,nW b

~Dx,Dy,Z,Dz!

3(
lWb

C lWb , lWb
* ~Dx,Dy,Z,Dz!

2CnW a ,nW a
* ~Dx,Dy,Z,Dz!

3(
lWa

C lWa , lWa
~Dx,Dy,Z,Dz!G , ~B9!

DEdirect
mW nW a 5

1

2p l 0
2E dDrWV~Dx,Dy,Dz!(

lW
E dZC lW, lW ~0,0,

Z2Dz/2,0!@CnW b ,nW b
~0,0,Z1Dz/2,0!

2CnW a ,nW a
~0,0,Z1Dz/2,0!#, ~B10!

where the summation overlW means the summation over a
occupied levels with quantum number, (l 1 ,l 2), and summa-
tion over lWa(b) is the summation of all occupied levels wit
the same spin as the statena(b) . The interpretation of these
19533
ily

-

equations is similar to the zero width situation, except for
extra integration overz coordinates.

Note that Eqs.~B7!–~B10! can be transformed to the mo
mentum space by using theA function defined in Eq.~21!:

AnW bnW a
~qW !5E dxE dze2 iqxx2 iqzzFnW b

~x2qyl 0
2/2,z!

3FnW a
~x1qyl 0

2/2,z!

5E dze2 iqzzCnW b ,nW a
~2qyl 0

2 ,qxl 0
2 ,z,0!, ~B11!

so that we obtain

DEbind
mW ,nW a~qW'!5

21

V (
pW

cos@~pyqx2pxqy!l 0
2#V~pW !

3AnW bnW b
* ~pW !AnW anW a

~pW !,

DERPA
mW ,nW a~qW'!5

2

2p l 0
2Lz

(
pz

V~qx ,qy ,pz!

3uAnW bnW a
~qx ,qy ,pz!u2,

DEexch
mW ,nW a5

21

V (
pW

V~pW !F(
lWb

uAlWnW b
~pW !u2

2(
lWa

uAlWnW a
~pW !u2G ,

DEdirect
mW ,nW a 5

1

2p l 0
2Lz

(
pz

(
lW

V~pz!AlW lW
* ~pz!

3@AnW bnW b
~pz!2AnW anW a

~pz!#, ~B12!

which are identical to the results we have derived before
Sec. III E by noting thatAnW mW

* (qW )5AmW nW (2qW ).

APPENDIX C: ANALYTICAL EXPRESSION FOR

An¢ an¢ b

„0…,ss8
„q¢ …

The explicit formula for the functionAnW anW b

(0),ss8(qW ) we use

in this paper can be evaluated by using the known ma
ematical properties of the generalized Laguerre polynom
Since it is defined by the noninteracting wave function
which are not dependent on the spin index explicitly, we c
neglect the spin index totally here and calculate the orb
integer directly from Eq.~47!. Using Eqs.~7! and ~8!, we
obtain the following results@for convenience, letnW a

5(na ,na8 ) andnW b5(nb ,nb8 )]:
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AnW anW b

(0)
~qW !5Anab,min!

nab,max!
•

nab,min8 !

nab,max8 !
expF2

cos2u~qyl 0!21~cosuqxl 02sinuqzl 0!2l1
2

4l1
G

3expF2
sin2u~qyl 0!21~sinuqxl 01cosuqzl 0!2l2

2

4l2
G

3S 7cosu~qyl 0!2 i ~cosuqxl 02sinuqzl 0!l1

A2l1
D mabS 7sinu~qyl 0!2 i ~sinuqxl 01cosuqzl 0!l2

A2l2
D mab8

3Lnab,min

mab S cos2u~qyl 0!21~cosuqxl 02sinuqzl 0!2l1
2

2l1
DL

n
ab,min8

mab8 S sin2u~qyl 0!21~sinuqxl 01cosuqzl 0!2l2
2

2l2
D ,

~C1!

where 6 is the sign ofna
(,)2nb

(,) for each bracket andnab,min(max)
(,) [Min(Max)$na

(,) ,nb
(,)%, and mab

(,) [una
(,)2nb

(,)u. l1,2

5( l 1,2/ l 0)2 are dimensionless parameters.Ln
m(x) is the generalized Laguerre polynomial.

As for a ZWW, we can letv0→` and obtain

Ananb

2D ~qW'!5Anab,min!

nab,max!
expF2

q2l 0
2

4 G S 6qyl 02 iqxl 0

A2
D m

Lnmin

m S q2l 0
2

2 D , ~C2!

whereq5uqW'u, andz component has been integrated out. All notations are the same as in Eq.~C1! above.
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