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Resonant Raman scattering by charge-density and single-particle excitations in semiconductor
nanostructures: A generalized interband-resonant random-phase-approximation theory
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We develop a generic theory for resonant inelastic ligtaman scattering by a conduction-band quantum
plasma, taking into account the presence of a filled valence band in doped semiconductor nanostructures within
a generalized resonant random-phase approxim@R&#). Our generalized RPA theory explicitly incorpo-
rates the two-step resonance process where an electron from the filled valence band is first excited by the
incident photon into the conduction band before an electron from the conduction band falls back into the
valence band emitting the scattered photon. We show that when the incident photon energy is close to a
resonance energy, i.e., the valence-to-conduction-band gap of the semiconductor structure, the Raman-
scattering spectral weight at single-particle excitation energies may be substantially enhanced even for long-
wavelength excitations, and may become comparable to the spectral weight of collective charge-density exci-
tations(plasmon. Away from resonance, i.e., when the incident photon energy is different from the band-gap
energy, plasmons dominate the Raman-scattering spectrum. We find no qualitative difference in the resonance
effects on the Raman-scattering spectra among systems of different dimensiofaiiegwo, and three
within RPA. This is explained by the decoherence effect of the resonant interband transition on the collective
motion of conduction-band electrons. Our theoretical calculations agregquellitatively and semiquantita-
tively) with the available experimental results, in contrast to the standard nonresonant RPA theory, which
predicts a vanishing long-wavelength Raman spectral weight for single-particle excitations.
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[. INTRODUCTION lence band and simplistically assumes the external photons

to interact entirely with conduction-band electrons, the po-

In recent years the elementary electronic excitation spedarized RRS intensity is proportional to the dynamical struc-

tra of a variety of doped semiconductor nanostructures, suclre factof®* of the conduction-band electrons, and there-
as two dimensional2D) quantum well heterostructures, su- fore has strong spectral peaks at the collective mode
perlattices, and more recently, one-dimensional quanturfféquencies at the wave vectors defined by the experimental
wire (QWR) systems, have been studied extensively botfpeometry. The dynamlcgl structu_re factor peaks c_orreqund
experimentally~*! and theoretically?~2° Rich experimental to thg poles of the reduqble density response function, which

spectra of the elementary electronic excitatidssich as &€ given by the collective CDEfplasmons of the electron

charge density excitation€€DE’s), spin-density excitations system n the Iong-wave!ength Iimit._ In particular, single-
(SDE’s), and single-particle excitationSPE'S for both in- particle electron-hole excitations, which are at the poles of
trasubb,and and intersubband excitatioirs these systems the corresponding irreducible response function, carry no
. . X : ) long-wavelength spectral weigtabout three orders of mag-
are typically experimentally investigated by using the reso-

. . 2 nitude weaker than the CDE spectral weight at the typical
nant Raman-scatterif@RRS technique, which is a powerful wave vector, 18 cmL, accessible in RRS experimenta

and versatile spectroscopic 'Fool to study interacting eIectroLEIhe density response functiéaccording to thé-sum rulg®).
systems. In the RRS experiment, external photons are aly,o spg therefore shouftbt, as a matter of principle, show
sorbed at one frequency and one momentwmandk;, and 5 in the polarized RRS spectra in any dimensions. The re-
emitted at anothety; andk;, creating one particle-hole pair markable experimental fact is that there is always a relatively
(or collective excitation or more in the conduction band. weak (but quite distinct SPE peak in the observed polarized
The energy and momentum difference between the inciderRS spectra in addition to the expected CDE peak. This
photon and the scattered photon is the Stokes shift, indicakxperimental presence of a SPE peak in RRS cannot be ex-
ing the dispersion of the relevant elementary electronic exciplained by the standard theory, which, however, does give
tation created in the system. In so-called polarized RRS gethe correct mode dispersion energy for both the CDE and
ometry, with the incident and scattered photons having th&PE, but fails to explain why the SPE spectral weight is
same polarization, the excited electrons have no spin-flipstrongly enhanced in the RRS experiments. This puzzling
during the scattering process, which therefore corresponds featuré>1°of a ubiquitous anomalous SPE peak, in addition
the elementary charge-density excitations of the system. Ab the expected CDE pedkr equivalently a two-peak struc-
low temperaturegwhich is of interest to us in this paper ture), occurs in one-, two-, and even three-dimensional
there is no real absorption of elementary excitations by theloped semiconductor nanostructutest exists in low-
incident photon, and the anti-Stokes line is not of any impor-dimensional semiconductor systems both for intrasubband
tance. and intersubband excitations.

In standard theor{,~?°which ignores the role of the va-  Many theoretical proposdfs>223vere made to explain
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this two-peak RRS puzzledd hocproposal3?? were made schemg a compellingly generitheory for RRS experiments

in the literature that perhaps a serious breakdown of momerby including the valence-band electrons during the scattering
tum or wave-vector conservatigarising, for example, from processes for one-, two-, and three-dimensional semiconduc-
scattering by random impuritigss responsible for somehow tor systems, following our earlier short paffeon 1D sys-
transferring spectral weight from large to small wave vec-tems. We find that the RRS spectral weight at SPE energy is
tors, because the usual linear-response theory predicts that@&#trong function of the resonance condition—the SPE spec-
very large wave vectorén order of magnitude larger than tral weight is substantially enhanced when the incident pho-
the experimentally used RRS wave veciprghere the CDE  ton frequency is near the semiconductor band-gap resonance
mode is severely Landau damped, the dynamical structurg"€r9Y: and decreases d'rastlcally away from the resonance. It
factor should contain a finite SPE spectral weight correlS important to emphasize that this feature of our theory
sponding to high-energy electron-hole excitations. Apartagrees with experimental observations—the anomalous SPE

from being completelyad hog this proposal also suffers peak exists only around resonance, and its gpgctral strength
from any lack of empirical evidence in its support—in par- decreases off resonance. Our results show similar qualitative

ticular, the observed anomalous SPE peak in the RRS spectpé?ha\/iqrs for the RRS spectra in one-, two-, and three-

does not correlate with the strength of the impurity scattering/mensional systems. 2 .

in the system. We recently systematically analy2edl the One dimensional systemsactually pose a specidand

proposed mechanisms within nonresonant RRS théiy, subtle problem with respect to understanding the two-peak

without incorporating the valence band in the theory, simplyRRS ~spectra, because 1D electron systems —are

assuming the inelastic light scattering process to be entirel erjerlcall)? ' LU“'“Qer I!qU|ds (i.e., .no'n-Ferml liquids

confined to the conduction-band free carrier systdeading hich have no quasiparticléSPE excitations whatsoever.

to the conclusion that none of the proposed nonresonarf'€ €lémentary excitations in 1D electron systems are

mechanisms can explain the ubiquitous two-péhk lower- bosonic spinon and ho_Ion collective modes. It is therefore

energy SPE peak and the higher-energy CDE pstkcture conceptually problematic to comprehend how an anomalous

of the observed RRS spectra. “SPE” feature can arise in 1D semiconductor quantum wire
We recently reportéd a resonantRRS theory, obtained RRS spectra, as observed expenmenl’aWO’.HThe ?ssge C?f

by generalizing the nonresonant random-phaseunderStand'ng 1D RRS spectra from a Luttinger liquid view-

approximation (RPA) theory to include the filled valence POINt was recently discuss€d™ in the literature, and we
band in the semiconductor, reflecting the two-step resonarf?fra'n from discussing this point further in this paper since it

nature of the RRS process. The purpose of the current papt Peyond the scope of our work. In particular, our use of a
is to provide the details of our resonant RRS theory and@eneralized RPA enables us to develop a unified consistent

more importantly, to present RRS results for 2D and 3DN€0ry of resonant RRS in arbitrary dimensiolirscluding
systems which to our knowledge were not discussed earligt"€ dimension and the Luttinger liquid nature of 1D quan-
in the literature(our earlier papéf presented only 1D RRS tum wires is not of any relevar)ce in .our.theory. We mention,
result3. The observed experimental RRS phenomenology if10Wever, that a complete Luttinger liquid theory of 1D RRS

1D, 2D, and 3D systems being very similar qualitatively, our€XPeriments was recently developéand this Luttinger lig-

generic interband-resonant RRS theory, as reported hereiHid theory builds on the resonant nature of our work pre-

provides a conceptual theoretical foundation for understand®ented in this paper.

ing RRS spectroscopy in doped semiconductor structures. 1 ne rest of this paper is organized as follows: in Sec. |l
In this context, we emphasize that the striking similaritywe describe the theory of nonresonant and resonant Raman-

of the experimental RRS spectra in one-, two-, and threesScattering process in the RPA. In Sec. Ill we present and

dimensional semiconductor systems suggests that the prog!_scuss' our calculated RRS results for one-, two-, and three-
lem (namely, the two-peak nature of the RRS spectra Witrplmensmnal GaAs semiconductor systems. We then summa-

the conspicuous presence of the “forbidden” SPE peak ~12€ OUr work in Sec. IV. All the result_s shown in this paper

not specific to 1D systems, where our earlier thébmas are for QaAs—based systems_, but obviously th_e theory applies

applied. The ubiquitousness of the strong SPE spectrdP @ny direct-band-gap semiconductor material.

weight in the RRS experimer(independent of system di-

mensionality, dependent only on the resonant nature of the Il. THEORY

experimenk suggests that the theoretical explanation for this '

puzzle must arise from some generic physics underlying In Fig. 1@ we depict the schematic diagr&’=2°for

RRS itself, and cannot be explained by the non-generic anthe two-step procegsteps 1 and 2 in the figurénvolved in

manifestly system-specific theories which have been madthe polarized resonant Raman-scattering spectroscopy at the

occasionally in the literature. The resonant RRS theory preEqg+ Ay direct gap of an electron-doped GaAs system

sented hereitand in our previous papeprovides ageneric ~ where an electron in the valence band is excited by the inci-

explanation for the two-peak structure of the RRS spectra bgent photon into an excitedi.e., above the Fermi level

establishing that the so-called low-energy anomalous SPEonduction-band state, leaving a valence-band hole behind

feature in the RRS spectrum arises entirely from the resonaristep 1; then an electron from inside the conduction band

two-step nature of the RRS experiment, and cannot be eX-ermi-surface recombines with the hole in the valence band

plained within any non-resonant theory. (step 2, emitting an outgoing photon with an energy and
In this paper we provide(within the resonant RPA momentum(Stokes shift. The RRS process is a two-step
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(valence band and by a background lattice dielectric con-

¢ \W’ stante,.
I\ ) 3

/ A. Coulomb interaction
1 |2 The realistic(bare Coulomb interaction in the artificially
(b) confined semiconductor nanostructures depends strongly on
aVAVAY = ) )
Al - the confinement geometry of the systems. In bulk 3D semi-
®; ©¢ \ﬁr{ conductor materials, the unscreened Coulomb interaction has
a long-ranged 1/decay in the real space, and has the fol-
/\ /\/LLI4 lowing Fourier transform in momentum space,
v
2 3 2
e-(dr° . dme
(a) (c) V3P(q)=— Tret=——0, )
g0l 1| eolq|

FIG. 1. (a) Schematic representation of RRS in the direct-gap
two-band model of an electron-doped GaAs nanostrucwyend  wheree is the electron charge ang, is the dielectric con-
oy are the initial and final frequencies of the external photons. Stepsiant of the background materi@bout 12 in the GaAs semi-
1, 2, and 3 are described in the t_e{RRS involves steps 1 and 2 cgnductor systein We use the statice) lattice dielectric
only). (b) and (c) are Feynman diagrams of the electron-photon constant in our theory rather than the more conventional high
scattering process described pyA andA-A terms, respectively, - graquency ¢.,) dielectric constant in defining the Coulomb
m;hj;gttg:i:c? I—:}ar:mltoguarh{,’. ?olldt_and wavy |I?€S| represent interaction,V.(q), because inclusion of, is known to ap-
photon reen's functions, respectively. proximately account for the polaronic electron-phonon inter-
action in the system, which is rather weak in GaAs because
process involving steps 1 and 2, with the net result of ther®f its low Frohlich coupling constant{0.07). In a 2D semi-
being an elementary electron excitation created in the coneonductor quantum-well system, modern fabrication tech-
duction band through intermediate valence-band states, asques have produced very narrow 2D welis nanostruc-
shown in Fig. 1. The nonresonant approximation to RRSure size<100 A in GaAs in the confinement direction
ignores the intermediate valence-band states, and approxpading to an almost pure 2D electron system. It is therefore
mates the RRS process to take place entirely within the cor@ good approximation to assume the well width to be zero in
duction band of the system, as shown by the step 3 in Fig. 10Ur calculation, giving a 2D Fourier transform of the Cou-
The whole point of the theot§ developed in this paper is 0mb interaction:
that the nonresonant step 3 is not equivalent to the resonant 5 5
scattering involving steps 1 and 2. Note that the resonant VZD(q):e— dLeiq.rzzLe
process involving steps 1 and 2 depends explicitly on the ¢ gol) |r| golq|
incident photon energy, while the nonresonant approximation . ] . .
depicted in step 3 depends only on the energy diﬁerencgwcluspn of t_he confinement wave-function effect in the
between the incident and scattered photons and not on tiBeory is straightforward, and leads to a form fact¢q)
incident photon energy. This difference turns out to be cru{<1) multiplying V2°(q) in the theory. For a 1D semicon-
cial in RRS theory, and the resonance condition in the inciductor quantum wire system, we have to consider the realis-
dent photon energy gives rise to the anomalous SPE-likéc finite width of the wire(i.e., the relevant 1D form factor
feature in the RRS spectra as shown below. Electron spin iéffecth because the 1D Fourier transform ofr Igotential
conserved throughout the scattering processes, since we die.,[dre'"/|r|) diverges logarithmically, requiring regular-
considering only the polarized geometry where no spin-flipization by a length cutoff associated with the typical confine-
occurs. As mentioned before we use the RPA in our theoryment size. Therefore the Coulomb interaction for the finite
taking care to generalize it to the resonant situation involvingvidth quantum wire is obtained by taking the expectation
steps 1 and 2. In the RPA one neglects all exchangevalue of the 2D Coulomb interactidassuming the width in
correlation effectsle.g., self-energy and vertex corrections thez direction to be zero for simplicity as in our 2D model in
due to electron-electron interactipimcluding only the long-  Eq. (2)] over the confinement wave function along the trans-
range Coulomb interactiovi,(q) in the dynamical screening Vverse directior(y) of the wire. We then hav8the following
by the electron system, so as to correct the noninteractingoulomb interaction matrix element in the 1D QWR struc-
irreducible response function to the reducible response fundure of finite width:
tion. Following a preliminary discussion of the Coulomb in-
teraction in one-, two-, and three-dimensional semiconductor e (= = e 'Y gi(y)|% ¢ (y)|?
systems in Sec. 1l A below, we then develop the nonresonan¥c,ij(d) = s—f dy d)/f dx Ny
and the resonant RRS theories in Secs. 11 B and Il C, respec- 0= o X (y=y')

2

2

tively. Our theory is entirely within the effective-mass ap- 202 [w
proximation, and we parametrize the electron system in the = e—f dy dy'[ ()| #i(y")|*Ko(aly—y'[?),
semiconductor by electronnt) and hole (n,) effective 0=
masses corresponding to the tdttom) of the conduction (3)
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for interaction between electrons of subbarahd subbang in the effective-mass approximation, with, being the ef-
¢i(y) is the electron wave function ath subband of the fective electron mass of the semiconductor conduction band.
QWR along the transverse direction. In this paper we assumg/e have made the transverse gauge cRoi®eA(x; ,t)=0

that only the lowesti(=1) ground conduction subband is for the radiation field, leading tp;- A=A-p; as used in Eq.
occupied(i.e., subband spacinyE;,>Er at zero tempera- (5). H, is the Hamiltonian of electrons interacting with Cou-
ture, and all the higher energy subbands are ejrgutgl ne-  |omb potential without the radiation field, anid, is the
glect any intersubband transition, so that the subband '”deé‘lectron—photon interaction Hamiltonian which plays a cru-
i=1 throughout and will not be explicitly showio(x) in g role in the Raman scattering problem. Figurés) nd

sEgccgi)d ili'r:geTzheer%th;éiollg:mmgfdiﬁ:de?er?(?f;;u?cc}?;er?;sthe 1(c) correspond to the scattering processes induced by the
ind. X wave functigiy : _ o :
on the confinement geometry of the QWR system. For sim!Inear (b-A) term and the quadratio() term, respectively,

plicity we assume the QWR confinement potential to be th(—:lln the second quantization representation. pha term cre-

I ) A . ates and annihilates one photon in the state it acts on, making
1D infinite square well in thg direction. This turns out to be ntribution to th ttering rate in the first-order tim
a good approximation for the electrostatic gate-controlled10 co ution 1o he scatlering rate © firstorde e
confinement in the presence of the self-consistent Hartregependent perturbation theory since there is no net change of

potential due to the free electrons themsefRfeBhe confine- photon numbers.. The qgadratk? term, on t_he other hand,
ment wave functionp(y) is (for the ground subband makes a nonvanishing first order contribution to the scatter-

ing rate because photons are created and annihilated at the

> Ty same time in such scattering processes, as shown in (€jg. 1
\/>cos< if —al2<y<al2 In principle the second-order contribution of theA term in
p(y)= a a (4)  the time-dependent perturbation theory is of the same order
0 otherwise, as the first-order contribution from th&? term, as a simple

power counting in the coupling constaatc shows. This
wherea is the wire width in they direction. Using Egs(3)  second-order contribution, which plays a role in the RRS
and (4) we can numerically calculate the effective 1D Cou- phenomenon, will be studied and discussed in more detail in
lomb interactior’ for the semiconductor QWR system. Un- Sec. Ill. We can simply neglect thip(A) term inH, if we
like the pOWQr-laW behavior of Coulomb interaction in the are interested On|y in therorresonant Raman Scattering re-
higher dimensiongEgs. (1) and (2)], V;°(q) has a weak gime, either because the incident photon enesgyis of-
logarithmic ~ divergence, —2e%In(ga)/s,, in the long- fresonance i.e., far from the direct band gafy
wavelength limit §—0). Because of this logarithmic depen- (~1.5 eV in GaA$, or because we only want to consider a
dence ofV¢(q) onq (asq—0), the precise value of the wire nonresonant process as in step 3 in Fi@).1The A2 term,
width (a) is not particularly important in our theory, making peing a scalar field operator which commutes with the elec-
our simple infinite square-well approximation a reasonablgrgn field #(x) leading to the perturbative Hamiltoniat,

one for our purpose. (neglecting thep- A term), is proportional to the electron
density operatorn(x)=23¢;r(x)¢s(x). The nonresonant
B. Nonresonant Raman scattering (corresponding to the step 3 process in Fig. Raman-

In the presence of an external photon field the interactin?:‘:atte”ng intensity at frequency shié and momentum
Hamiltonian between the free-electron gas and the radiatioljansferq therefore can be calculated from the dynamical
field is assumed to be obtainable from the standard gaugdlructure factorthe imaginary part of the density response
invariant prescriptioi:2 p—p—eAlc, whereA is the ra- unction in the linear-response thed®;

diation field (photon) vector potential operator and the
speed of light. The Hamiltonian, including the radiation field

and the electron§.e., the free carriers induced by dopjng 2

) i . «—Imll(q,w)
the semiconductor conduction band, can therefore be written dQdw
as (we neglect the spin-photon interaction considering only .
polarized RRS spectra where spins do not play any explicit — Im[iJ dte“Y([n'(q,t),n(q,0)1)o (6)
role) 0 T '

1

m

N
—eAX, ,D/cP+ D V.(x,—x))
pl 1 e\ j . .
e UEES) where (- --)o is the ground state expectation value, and

n(q,t) is the electron density operator;n(q,t)

=S4 sCh1qs()Cis(t), With cf (ks the electron creation
(annihilation) operator for momentunk and spins. In the
standard many-body theory, thiseducible response func-
tion can be obtained by the reducible set of polarization
diagram&®?! (Dyson’s equation; see Fig) 2ormed by the
irreducible conduction-band polarizability (g, w) for the
scattering process, where one has an electron and a hole in
Hy (5)  the conduction band,

n-3
>

I

[\

P <
: +E Vc(Xi_Xj)

2me Jj<i

Hg
e e?

i'A(Xi’t +
P ) 5

I

2
ZA(Xi ’t)

m,C

My
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‘ 11 ' 1D plasmon
kq 7 2D plasmon

Viq) - 2 o 3D plasmon
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5 F e
St s
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L

ey SPE (2D+3D)

FIG. 2. Diagrammatic representation of the conduction-band ir- e ——
) e . 0.0 0.2 0.4 0.6 0.8 1.0
reducible response functiofil§"(g,») and reducible response Mamentam ()
function II(q,w) in the standard random-phase approximation. i
V(q) is the Coulomb interaction. FIG. 3. Typical momentum-energy dispersion of the single-
particle excitation continuunishaded regionand the collective
charge-density excitation§plasmon$ of one-, two-, and three-
II(q,w)=1Iy(q,w) +1Iy(q,w) V(DI o(q, ) + - - - dimensional electron systenfsalculated within the RPA

. ITo(q, @) . [Ty(q, @) R ] o
TV (g o) eqo) tmua[where_ Inﬂo(_q,w)qﬁo] within the RPA fgr one-, two-,
and three-dimensional systems. Note that, in contrast to 2D
wheree(q,w)=1-V.(9)I1y(q,w) is the dynamical dielec- and 3D systems, the 1D SPE continuum is very restricted in
tric function. the long-wavelength limitg<<kg). In higher dimensions, the
In the random-phase approximatiomsed in this papgér  SPE continuum is gapless for any finite wave vector smaller
the irreducible polarizabilityllo(q,») is approximated by than X, but it is gapped in one dimension due to energy-
the noninteracting electron-hole bubll™(q, ), without  momentum-conservation-induced phase-space restrictions.
any self-energy or vertex correction. The RPA is known to ba_Jsing Egs.(6)—(8) we can calculate the nonresonant Raman
a good approximaticfi—**?"* in two- and three- scattering spectra and the plasm@DE) dispersion(shown
dimensional electron systems for calculating plasnton  in Fig. 3) to compare with the experimental results and the
CDE) properties. It is also a good approximation for collec-resonant theory results discussed below. The calculated spec-
tive mode dispersion in one-dimensional electron systems,s are shown in Figs. (4)—4(c) for one-, two-, and three-

and gives a 1D plasmon dispersion which agree with thejimensional systems, respectively. We discuss these results

exact Luttinger-liquid theor’ The expression of in details in Sec. III.

M§™(q,w) for a d-dimensional system is

C. Resonant Raman scattering

ngﬁq,w)=ﬁf dvdp Go(p,»)Go(p+q,v+ w) . o
(2m) We now consider the full resonance situatisteps 1 and
2 in Fig. 1, including the valence band which
__~2 J No(P) ~No(P—9) obviously**?~*%%plays a crucial role in the RRS experiment
(2m)8 w+iy—p?2me+ (p—q)?/2m,’ because the external photon energy must be approximately

) equal theEy+ A, direct gap for the experiment to succeed.
In the RRS process the incident photon is absorbed and a
whereG(p, ») is the bare conduction-band electron Green’sscattered photon with the appropriately shifted frequency
function, and ny(p)=6(ke—|p|) is the zero-temperature (and wave vectoris emitted. Electron spin is conserved
noninteracting momentum  distribution  function  of throughout the scattering process. As discussed above, there
conduction-band electrong. is a phenomenological damp- are two stepgsteps 1 and 2 in Fig.(&)] involved in the
ing term associated with impurity scatteritmy other broad- polarized RRS spectroscopy, and both of these steps of in-
ening mechanismswhich is taken to be smally<Eg) in elastic scattering result from the A term of H, in Eq. (5)
our numerical calculation. The damping termmintroduces [see Fig. 1c)]. When the incident photon frequency is equal
finite widths to the spectral peaks in the dynamical structuréo the direct-band-gap enerdy,, the second-order “reso-
factor of Eq.(6), but does not affect the peak position and nant” perturbative contribution of the-A term becomes
spectral weight in any significant method. The imaginaryimportant and comparable to the first-order contribution of
part of the irreducible polarizabilityl(q,) [which is now the A? term, leading to an electron interband transition be-
approximated b)H(F,*PA(q,w) in our papef gives rise to the tween the conduction band and the valence band. The inter-
single-particle excitation, which is typically very small at action Hamiltonian of the RRS theory, with external photon
long wavelengths due to the dynamical screening effect omomenturk and frequency», can be expressed in a second
Eq. (7). In Fig. 3 we show as shaded regions the SPE conquantization representation as
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10 [ TT ~ 1 T T T .
z | 0.0050 (@) Hi=e"""Y) [ o(Dvpk (D) T 0 o (DCp 1 o(D)]
£ 3 0.0040 SPE po
S gl CDE ]
g L 0.0030
s 00020 +€' Y [€] o(D0pik o)+ 0] o(DCpiko (D],
= gk 0.0010 - p.o
o r 0.0000
g : 0.10 0.15 0.20 0.25 0.30 (9)
T 4r ., 7] with ¢, , and vy, being the annihilation operators of
R 4 CDE conduction- and valence-band electrons, respectively. The
& oL ;; _ elec'gron-photqn cpupling vertex;-(e/mscL)p- € (wheree is
i SPE i the light polarization, has been assumed to be constant for
L J ____________ o) simplicity. Applying the time-dependent perturbation theory
0 L L LI it (- MV N . .
to the ground staté0), characterized by a conduction-band
0.0 0.5 1.0 e 1.5 2.0 2.5 Fermi sea and no holes in the valence béatdzero tempera-
w/ke ture), we have the transition amplitude from ground stéte
10 . . . . to thenth excited state|n),
& i 0.0015 (b)
E L , T2 ty K @ K w:
]y 0.0010 STE i : cn<T>=f dtlf dt(n[H" " (t)H [ (t2)[0),
% r i -T/2 -T/2
g . - 0.0005 i — (10)
2 i 0{oo00 :I where we have changed the time integration range from the
! I conventional{0,T} to {—T/2,T/2} for the convenience of
T 4T :i ] changing variables later. By substituting the explicit form of
g o CDE ; H, and choosing the specific channel of backward scattering
A ok :E i (the so-called back-scattering geomgtiyt = —k;=q/2 and
i l, 1 w; 1= * /2, without any loss of generality, we obtain the
of . L ff’_E it 1 transition rate(ignoring excitonic and self-energy effertd/
0.0 0.5 1.0 1.5 20 25 obe
w/EF 1 2
4 F T T T N W= I|m? 2 Cn(T)
C (C) ] T n
> E 0.010 ; ]
E b 0008} 1 1 ]
5 ¢ i ] 1 T2 ty T2 t
& 3F 0008f ] \ 3 =lim= 2, f dtlf dtzf dtifl
S [ oo04f SPE ! ! Tl piops J=Tr2 ~T2 -T2 ~TP2
= 0.002f .77 ,l E 010y
>t 0.000 I ! ] St Lo
¢ 2r 0.0 0.2 0.4 0.6 0.8 1.0 1.2 " CDE E X dtyel Mzttt glelty tt 1y~ 1p)/2
T ot : ; T t
3 E :: E ><<Upl—q/2,(rl(té)vp2,Uz(tjll.)vp3,(rs(tl)vp4—q/2,a'4(t2)>0
® 1L CDE I ] . :
- | - ! !
» é J Ei x<Cp1,ol(tz)sz—q/2,o—2(t1)cp3fq/2,a'3(tl)Cp4,g—4(t2)>0'
O E . L /I:\ (11)
0.0 0.5 1.0 1.5 Since the valence band is completely filled in the ground
w/Ep state at zero temperature, we have only one contraction of

the valence-band electron operators, which is assumed to be
noninteracting for simplicity,

FIG. 4. Dynamical structure factor obtained by a standaoh-
resonantRPA calculation at zero temperature fay one-,(b) two-,
and (¢) three-dimensional electron systems ignoring valence-band
effects. Solid lines are calculated spectra in the long-wavelength
limit (small momentum transfefg|=0.1ke) and dashed lines are
for the large momentum transfg¢fg|=0.7g in (a) and (b), and
|g/=0.4ke in (c)] calculations. The electron densities used in the
calculation are 6.5 1C°, 3.2x 10", and 1.8<10Y c¢m™2 for one-,
two-, and three-dimensional systems, respectively. Finite impurity 2 . o
scattering ¢/=10"%E;) has been included to broaden the peaks.hereE,(p)=—p“/2m, is the kinetic energy of the valence-
The ripple in(b) and(c) is of numerical origin. band electrons. Setting implicit time variables$; {—1t;

T T
<Upl—q/2,gl(té)vp2,Uz(ti)vps10—3(t1)vp47q/2,04(t2)>0
=(v glfq,z,(,l(té)v D, ,,,2(t1)>o<v£3 (1)U, —q20,(t2))o

5[)1 Pt q/260'1 e 5p3 Py q/2503 Ty

xeiEy(Pl—q/2)(t1—té)eiEv(P3)(t1—tz), (12)
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*+t4/2 andt112—>t_2tt2/2), and using the quasiparticle ap-
proximation for the electron operatorc, ,(t—1t/2)

=c, ,(t)e 'EP2 e can obtain the transition rate, after
evaluating the; andt, integrals,

C
k
1 (T2 _ (T2 _  — — = A*(k,qMA(k,q)
W= Iim?J dtlf dt,e' (2"t .

Tow ! J=TI2 -T2

q
V@)
X > A*(plrq)A(pZ1q)<cpl+q/2,al(t2)cglfq/2,o—l

P1.P2
01,02
X (63)Cp, a2 (TG, - qoer (T1))o N G - -3
= fxdtei“’t<NT(q,t)N(q,O))0, (13 FIG. 5. Diagrammatic representation of the resonant Raman-
0 scattering response function including the valence-band electrons in

the RPA calculation. Different kinds of irreducible response func-
tions are defined and explained in Eq$7)—(19), and the matrix
elementA(k,q) is defined in Eq(15).

where the resonant “density” operatd\(q,t) is defined to
be

N(g,t)=— > A(p,Q)Cpfq/z,a(t)cgm/z,(r(t) Comparing Eqgs(13) and (14 with Eq. (6),_We find that
p.o the effect of resonancg.e., photon-induced interband tran-
sition) on the conduction-band electrons is the matrix ele-
=> A(p,Q)Cgm/z »(DCpgzalt) (14  mentA(p,q), which arises from the time difference between
p.o ' the excitation of one electron from valence band to the con-

duction bandstep 1 and the recombination of another elec-
tron from inside the conduction-band Fermi surface with the
A(p,q) hole in the valence ban@tep 3. The resonance condition is
parametrized by the dimensionless paramé&gr with E,,
_ 1 =0 being the precise resonance condition. In the following
B Eg—Q+[E(p—a/2)+E(p+a/2)]2—E,(p)+i) discussion we define “off resonance” #§,|/>1 and “near
resonance” agE,|<1. Off resonance the spectral weight
B 1/Ee decreases afE,| 2, as can be seen from E@L5). Near
- Ew+(l+§)(52—1)+52/4+i>\/EF' (15 resonance the singular properties Afp,q) enhances the
spectral weight nontrivially. The calculation of the RRS
Here szEgl[Eg+(1+ EEr—Q] with é=m./m,; p  spectrum is therefore reduced to the evaluation of the corre-
=plke; g=0q/ke; and Er=E(kg) is the Fermi energy of Iatior_1 fur_1ctio_n of Eq.(14_), which in the resonant RPA ap-
the conduction-band electrona. is a phenomenological pro>_<|mat|on(|_.e., ngglectmg aI.I vertex cqrrectlon of the irre-
broadening factor we introduce to include roughly all pos-ducible polarizabilities, see Fig) % obtained to be
sible broadening effects, e.g., the finite imaginary part of the
electron self-energythe quasi-particle life timethe finite TR w)+H1RPA(qyw)ﬁ'fPA(q,w)Vc(Q)
impurity or disorder scattering, and any broadening or damp- 2 4 e(q,w)
ing arising intrinsically from the photon field or the associ- (16)
ated optical scattering. We taketo be small £0.0%) in
the numerical calculation. Note that the phenomenologicaYV
parametel is a resonance broadening paraméassociated 13A(q, )
with the band to band procésgo be contrasted with the 2 '

for g# 0 with the matrix elemenf(p,q):

W= —Im

here

simple spectral broadening paramejeof Eq. (8), which is _9 |A(P, @) |2[No(P+a/2) — no(P—a/2)]
purely a conduction-band phenomenological parameter. In df P i —E bt a2 T E(0—a/2
our leading order RRS theoty [of Eq. (15)] and y [of Eq. (27) wt+iy=E(p+a/2)+E(p—a/2)

(8)] are completely independent phenomenological relax- (17)
ation or damping termgboth of which should be smally

and N<Eg, for our leading order theory to be sensible and

Calculation ofy and X is beyond the scope of the leading .

P
order theory—it is entirely possible that in a more completenl Aa,0)
theory including quasiparticle self-energy and vertex correc-
tions as well as electron-impurity scattering and the electron- _ —2 J pA(piq)[no(p+q/2)— No(P—0a/2)] ., (18
photon interactiony and\ will turn out to be related. (2m)d w+iy—E(p+0a/2)+E(p—a/2)
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ﬁRPA\(q ) momentum scattering channel. Note that this situatian,
! ’ negligible theoretical spectral weight at SPHoes not
) A*(p,)[No(p+a/2) —ng(p—a/2)] chang@®2?23%ven if one goes beyond the RPA and includes
= (Zw)df p w+iy—EJp+a/2)+Edp—a/2) vertex correctionge.g., the Hubbard approximation or the

time-dependent local density approximalion the irreduc-
(190 ible response function. Therefore, as long as resonance ef-
fects are neglecteldnd thus one includes only step 3 of Fig.

The dynamical dielectric functior(q, ), is the same as Il(a)a ignoring the interbanq resonl?nce progt.)elﬂse calcu-
defined in Eq.(7) within the same RPA formulakeq. (8)]. ated RRS spectra at experimentally accessible wave vectors

Note that resonance effects arising fré{p,q) (i.e., consid- produce only observable CDE peaks in contrast to the ex-

ering the full two-step process involving both conduction perimental two-peak situation which, in addition, at reso-
and valence bands rather than just the effective single-steff"'°® always finds the SPE spectral weight to be comparable

procesgstep 3 of Fig. 1a)] within the conduction bandare -0 the CDE spectral Weigﬁl.r'n'lgvnghe honresonant theory
Jp therefore in qualitative disagreement with experiments, as

nonperturbative, and depend crucially on the exact value of’ . A
the incident photon energy. In the nonresonant theory, b)'} fails to account for the ohbserved tWO'Ipea]Ek RIES Spl wra.
contrast, the incident photon energy does not enter into tthlg ;:I)geit rgsigg;oxﬁessgynveoftr) rggu ;Sn do?i[g seysagr?]gzae:in
calculation of the spectra, only the frequency shiftnatters. Fig. 4 within the resonant RPA theofggs.(13—(19)] in the
long-wavelength region/¢| =0.1kg). RRS spectra for differ-
ent resonance conditions, i.e., for different valueg&gf are
shown in Fig. 6 with a larger value of the impurity broaden-
In Figs. 3 and 4 we show the energy dispersion and théng parameter y=0.05, 50 times greater than theused
dynamical structure factor, respectively, of the nonresonann Fig. 4) in order to compare with the experimental RRS
RRS spectra in the RPA theory for 1D, 2D, and 3D semiconprofiles. The lower{highery energy peak is associated with
ductor GaAs systems. We emphasize that all earlier theorethe SPE(CDE) of the electron systems. The most important
ical works on RRS spectroscopy, with the only exception ofqualitative feature of the resonant theory results is the great
our earlier brief communicatiolf, use the nonresonant ap- enhancement of the SPE spectral weight compared with the
proximation. The sold lines in Fig. 4 are the RRS spectrurmonresonant theory. Figuresa 6(b), and 6c) (correspond-
profiles in the long-wavelength limi{small momentum ing to the results of 1D , 2D, and 3D systems, respectjvely
transfer|g|=0.1kg), while the dashed lines are the results ofhave qualitatively very similar behaviorgi) the overall
larger momentum transfer for comparisdiithe experimen- spectral weights decay very fast off resonafiee, for large
tal situations correspond to the long-wavelength limit, with|E|); (ii) the peak positions of the SPE and CDE in Fig. 6
|g|<kg.) Two elementary excitations are observed in theare the same as the nonresonant excitation energies in Fig. 4,
nonresonant spectrdig. 4) at two separate peaks: one is i.e., resonance does not affect the energy dispersion of the
single-particle excitation at lower energy, and the other islementary electronic excitation@ii) the spectral weight of
collective charge density excitation at higher enef@yote  the SPE(lower-energy peakis essentially zero far away
that we use a very small damping=10 3Eg, in Fig. 4in  from resonance|E,|>0.2) where the CDEhigher-energy
order to resolve the small SPE weights; largér smear out peak dominates similar to the nonresonant spectra in Fig. 4
the SPE continuum completelywWe first mention that the (except for the larger value af used in Fig. & and(iv) near
RPA calculated energy dispersions of both mo@RBE and resonance |E,|<0.2), the SPE spectral weight is greatly
CDE) agree quantitatively with the experimental RRS enhanced—in fact, the SPE spectral weight becomes compa-
resultsh1®1819.2433 However, the theoretically calculated rable to or even larger than the CDE spectral weight, in sharp
nonresonant dynamical structure factor in Fig. 4 is entirelycontrast to the nonresonant thedwhere the SPE weight is
dominated by the collective CDE mode; the SPE modealways extremely small at long wavelengthn Fig. 7 we
while being present in the results, carries a negligible angblot our calculated RRS spectral weight ratio of CDE/SPE as
unobservable spectral weight. This is entirely inconsistena function of the resonance condition, explicitly showing the
with the “two-peak” structure observed in the experimental dramatic effect of resonance on the SPE spectral weight. We
RRS spectrawhere the two peaks carry comparable spectrabmphasize that this spectacular enhancement of the SPE
weights. In the large momentum-transfer res@itdich are  spectral weight in the full two-step resonant scattering pro-
outside the experimentally accessible regirsigown in Fig.  cess(over the simple one-step nonresonant effective theory
4 (dashed lines one finds that SPE spectral weights areis a nonperturbative effect in our theory. Our calculated spec-
somewhat enhanced over the long-wavelength results, arich at resonance are in excellent qualitative agreement with
correspondingly CDE weights decrease for large momenturthe corresponding experimental RRS spectra shown in Refs.
scattering due to the strong Landau damping of plasmon$—3, where the SPE spectral weight dies off rather quickly as
(CDE) to the single-particle excitations which become al-the incident photon energy goes off resonance. From our
lowed at large wave vectors. The SPE spectral weight is stiltesults presented in Fig. 7, we also find that the spectral
much weakel(by three orders of magnitugi¢han the CDE weight ratio of the CDE to the SPE has very similar reso-
weight even at large wave vectors, and, in addition, the inhance behaviors for systems of different dimensionalities,
coherent SPE continuum is severely broadened in this largeonsistent with the experimental findings, and indirectly en-

IIl. RESULTS AND DISCUSSIONS
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suring the validity of RPA theory in the RRS spectroscopy, atband process not included in the nonresonant theory. In par-
least in the experimental parameter regimes. ticular, the functiorA(p,q) defined in Eq(15), provides the

To understand the resonance condition dependéoge “wave-vector conservation breaking” mechanism by mixing
E,) of Fig. 7, we should explain the resonance effects notonduction- and valence-band wave vectors nontrivially; if
only on the SPE continuum, but also on the CDE modes\(p,q) is a constant, there is no resonant enhancement of the
around the resonance region. In some sense the extreme regpE mode. Equivalently, the dependenceA¢p,q) on two
nance conditiorE,,=0 may be thought of as providing an gitferent wave vectors is the effective wave-vector conserva-
indirect mechanism for the breakdown of the wave-vectokis, preakdown mechanism. Mathematically we can start
conservation for the scattering process considered only,m the RPA dynamical structure factor defined in EXg),
within the conduction band in the prevailing nonresonan here the CDE spectral weight is given by the numerator of
theory where the virtual valence-band effects are ignore RPA —hp
[i.e., step 3 in Fig. ()]—thus our theory preserves the es- € second termlI7Y(q, )17 Na.0)V(a), at the CDE
sence of the “massive” wave-vector breakdown mechanisnflispersion energy determined by the zero of the dielectric
proposed in Ref. 5, but in a very indirect sense because niinction[&(q,»)=0]. Off resonance, the functiok(p,q) is
impurity scattering is involved. Instead, participation by thejust a slowly varying function of momentumin the integral
valence-band introduces an effective mechanism for waverange|p*kg|<q/2 obtained by the occupancy factos(p
vector conservation “breakdown” through a virtual inter- +q/2)—ng(p—a/2), in Egs. (17)—(19), and therefore the
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8[ behavior in 1D RRS spectroscopy can therefore be obtained
by |E,|<que/Er=2(g/kg), which is 0.2 forq=0.1kr and

is consistent with our numerical result shown in Fig. 7. We
therefore physically explain the failure of the theoretical at-
tempt of using LL theory to study 1D RRS experiments near
resonancé? The qualitative similarity of the experimental
RRS results for one-, two-, and three-dimensional systems
confirms our theory, which is based on the conventional
Fermi-liqguid model. We note, however, that the Luttinger-
liquid description of 1D systems was recently theoretically
modified* in an attempt to understand the observed RRS
spectra, but the applicable theory is quite subtle and beyond
the scope of this paper.

Spectral weight ratio (CDE/SPE)

, , , IV. SUMMARY
FIG. 7. Ratio of the resonant Raman-scattering spectral weight

(CDE to SPE as a function of the resonance enefgy, in one-, In summary, it may be important to emphasize that the
two-, and three-dimensional systems. Off resonafEg|=0.2,  striking phenomenological similarity in the experimentally
CDE always dominates SPE in the spectra, but near resonancebserved RRS spectra in one-, two-, and three-dimensional
|E,|<0.2, the SPE weight could even be stronger than the CDEsystems is a strong indication that generic interband reso-
weight. All system parameters are the same as in Fig. 6. nance physics as studied hefwithin a resonant RPA
schemg plays a fundamental role in producing the low-
RRS spectra show behavidie., the CDE dominance the energy “SPE” feature in the polarized RRS spectra, which
SPB similar to the standard RPA resultsee Fig. 4 except  cannot be explained by the standéndnresonanttheory or
for the overall decreasing weight factlﬁgjz. Near resonance any other nongenerigsystem-dependenttheories. Our
(E,~0), however, the resonance functidq{p,q) in Eqs. theory can also be applied to depolarized RRS experiments,
(18) and(19) can essentially cancel the contribution from thewhere both single-particle and spin-density excitations are
other integrand in the polarizabiliti€glue to its sign change important, but the exchange energy should be included
at|p|=kg), so that the CDE spectral weigltoming essen- properly34 to separate these two excitations which are de-
tially from the second term in Eq16)] cannot be as strongly generate in the regular RPA calculation. Once exchange cor-
enhanced by resonance as the SPE weight, which arisgglation effects are invoked to distinguish the SPE's and
mostly from II5"(q,w) in Eq. (17). Therefore, the sign SDE’s (with the SDE’s lying below the SPE's by the ex-
change of the resonant functioA(p,q), is responsible for change energy our resonant theory can account for the ob-
the relatively weaker enhancement of the CDE weight comserved two-peak structure in the resonant depolarized RRS
pared to the SPE weight near resonance. We note that EgXperiments in a way very similar to the theory developed
(16), defining the resonance spectral weight in our theoryherein for the SPE’s and CDE's in the polarized RRS experi-
has two terms, both of which are important in giving rise toments. To summarize our results, we have developed a
a strong SPE spectral feature in the RRS spectra under resieory for resonant Raman-scattering spectroscopy in one-,
nance conditions. two-, and three-dimensional semiconductor structures by
Finally we give a simple explanation for the breakdown considering the full two step resonance process involved in
of Luttinger liquid theory in the 1D RRS process near reso-the scattering of external photons. We find that at resonance
nance. It is well known that 1D electron systems are besthe RRS spectra have considerable weight at the SPE, energy
understood as Luttinger liquids, where collective excitationgVith the SPE weight decreasing off resonance. There is no
are the only possible excitations and no single-particle excigualitative difference in the RRS spectra between systems of
tations exist for the conduction-band electrons. Howeverdifferent dimensions. Our results are in qualitative agreement
Luttinger-liquid behavior depends crucially on the chargeWwith experimental findings, and provide a generic theoretical
conjugation symmetry, where the Hamiltonian remains theé€Xplanation for a ubiquitous puzzle which dates back more
same after electrons and holes are exchanged about tHean 25 years. As a concluding note we point out that it may
Fermi surface. When the valence band is intrinsically in-b€ somewhat misleading to call the additional feature in the
volved near resonance in the RRS process, such electrofRRS spectra an “anomalous” SPE mode, as has routinely
hole Conjugation symmetry is tota”y broken, because thé)een done in the literature—a pure SPE mode arises from the
filled valence band is effectively “overlapped” with the con- imaginary part of the irreducible polarizability function, as
duction band at Fermi surface. In other words, an electro@iven within the RPA by Eq(8), whereas the anomalous
below the conduction-band Fermi surface now effectivelyadditional RRS feature arises primarily from the presence of
has a new channel, not restricted by the small 1D phasthe II57 term [Eq. (17)] in our resonant RPA theorEgs.
space, to be excited above the conduction Fermi surfac€l6)—(19)], which is(related to, butquite different from the
through the two-step resonant interband transition, througkrreducible polarizability, IIR™ [Eq. (8)] by virtue of the
the valence-band virtual transition. An estimated resonancrontrivial nature of the resonance functiép,q). Finally,
condition for this apparent breakdown of Luttinger liquid we mention that a very recent experimental report appeared
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