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Resonant Raman scattering by charge-density and single-particle excitations in semiconductor
nanostructures: A generalized interband-resonant random-phase-approximation theory

Daw-Wei Wang and S. Das Sarma
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 31 August 2001; published 13 March 2002!

We develop a generic theory for resonant inelastic light~Raman! scattering by a conduction-band quantum
plasma, taking into account the presence of a filled valence band in doped semiconductor nanostructures within
a generalized resonant random-phase approximation~RPA!. Our generalized RPA theory explicitly incorpo-
rates the two-step resonance process where an electron from the filled valence band is first excited by the
incident photon into the conduction band before an electron from the conduction band falls back into the
valence band emitting the scattered photon. We show that when the incident photon energy is close to a
resonance energy, i.e., the valence-to-conduction-band gap of the semiconductor structure, the Raman-
scattering spectral weight at single-particle excitation energies may be substantially enhanced even for long-
wavelength excitations, and may become comparable to the spectral weight of collective charge-density exci-
tations~plasmon!. Away from resonance, i.e., when the incident photon energy is different from the band-gap
energy, plasmons dominate the Raman-scattering spectrum. We find no qualitative difference in the resonance
effects on the Raman-scattering spectra among systems of different dimensionalities~one, two, and three!
within RPA. This is explained by the decoherence effect of the resonant interband transition on the collective
motion of conduction-band electrons. Our theoretical calculations agree well~qualitatively and semiquantita-
tively! with the available experimental results, in contrast to the standard nonresonant RPA theory, which
predicts a vanishing long-wavelength Raman spectral weight for single-particle excitations.

DOI: 10.1103/PhysRevB.65.125322 PACS number~s!: 73.20.Mf, 78.30.Fs, 71.45.2d
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I. INTRODUCTION

In recent years the elementary electronic excitation sp
tra of a variety of doped semiconductor nanostructures, s
as two dimensional~2D! quantum well heterostructures, s
perlattices, and more recently, one-dimensional quan
wire ~QWR! systems, have been studied extensively b
experimentally1–11 and theoretically.12–19 Rich experimental
spectra of the elementary electronic excitations@such as
charge density excitations~CDE’s!, spin-density excitations
~SDE’s!, and single-particle excitations~SPE’s! for both in-
trasubband and intersubband excitations# in these systems
are typically experimentally investigated by using the re
nant Raman-scattering~RRS! technique, which is a powerfu
and versatile spectroscopic tool to study interacting elec
systems. In the RRS experiment, external photons are
sorbed at one frequency and one momentum,v i andk i , and
emitted at another,v f andk f , creating one particle-hole pa
~or collective! excitation or more in the conduction ban
The energy and momentum difference between the incid
photon and the scattered photon is the Stokes shift, indi
ing the dispersion of the relevant elementary electronic e
tation created in the system. In so-called polarized RRS
ometry, with the incident and scattered photons having
same polarization, the excited electrons have no spin-fl
during the scattering process, which therefore correspond
the elementary charge-density excitations of the system
low temperatures~which is of interest to us in this pape!
there is no real absorption of elementary excitations by
incident photon, and the anti-Stokes line is not of any imp
tance.

In standard theory,16–20 which ignores the role of the va
0163-1829/2002/65~12!/125322~11!/$20.00 65 1253
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lence band and simplistically assumes the external pho
to interact entirely with conduction-band electrons, the p
larized RRS intensity is proportional to the dynamical stru
ture factor20,21 of the conduction-band electrons, and the
fore has strong spectral peaks at the collective m
frequencies at the wave vectors defined by the experime
geometry. The dynamical structure factor peaks corresp
to the poles of the reducible density response function, wh
are given by the collective CDE’s~plasmons! of the electron
system in the long-wavelength limit. In particular, singl
particle electron-hole excitations, which are at the poles
the corresponding irreducible response function, carry
long-wavelength spectral weight~about three orders of mag
nitude weaker than the CDE spectral weight at the typi
wave vector, 105 cm21, accessible in RRS experiments! in
the density response function~according to thef-sum rule20!.
The SPE therefore shouldnot, as a matter of principle, show
up in the polarized RRS spectra in any dimensions. The
markable experimental fact is that there is always a relativ
weak~but quite distinct! SPE peak in the observed polarize
RRS spectra in addition to the expected CDE peak. T
experimental presence of a SPE peak in RRS cannot be
plained by the standard theory, which, however, does g
the correct mode dispersion energy for both the CDE a
SPE, but fails to explain why the SPE spectral weight
strongly enhanced in the RRS experiments. This puzz
feature1,2,19of a ubiquitous anomalous SPE peak, in additi
to the expected CDE peak~or equivalently a two-peak struc
ture!, occurs in one-, two-, and even three-dimensio
doped semiconductor nanostructures.4 It exists in low-
dimensional semiconductor systems both for intrasubb
and intersubband excitations.

Many theoretical proposals12–15,22,23were made to explain
©2002 The American Physical Society22-1
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this two-peak RRS puzzle.Ad hocproposals5,22 were made
in the literature that perhaps a serious breakdown of mom
tum or wave-vector conservation~arising, for example, from
scattering by random impurities! is responsible for somehow
transferring spectral weight from large to small wave ve
tors, because the usual linear-response theory predicts th
very large wave vectors~an order of magnitude larger tha
the experimentally used RRS wave vectors!, where the CDE
mode is severely Landau damped, the dynamical struc
factor should contain a finite SPE spectral weight cor
sponding to high-energy electron-hole excitations. Ap
from being completelyad hoc, this proposal also suffer
from any lack of empirical evidence in its support—in pa
ticular, the observed anomalous SPE peak in the RRS sp
does not correlate with the strength of the impurity scatter
in the system. We recently systematically analyzed15 all the
proposed mechanisms within nonresonant RRS theory~i.e.,
without incorporating the valence band in the theory, sim
assuming the inelastic light scattering process to be enti
confined to the conduction-band free carrier system!, leading
to the conclusion that none of the proposed nonreson
mechanisms can explain the ubiquitous two-peak~the lower-
energy SPE peak and the higher-energy CDE peak! structure
of the observed RRS spectra.

We recently reported12 a resonantRRS theory, obtained
by generalizing the nonresonant random-pha
approximation~RPA! theory to include the filled valenc
band in the semiconductor, reflecting the two-step reson
nature of the RRS process. The purpose of the current p
is to provide the details of our resonant RRS theory, a
more importantly, to present RRS results for 2D and
systems which to our knowledge were not discussed ea
in the literature~our earlier paper12 presented only 1D RRS
results!. The observed experimental RRS phenomenolog
1D, 2D, and 3D systems being very similar qualitatively, o
generic interband-resonant RRS theory, as reported he
provides a conceptual theoretical foundation for understa
ing RRS spectroscopy in doped semiconductor structure

In this context, we emphasize that the striking similar
of the experimental RRS spectra in one-, two-, and thr
dimensional semiconductor systems suggests that the p
lem ~namely, the two-peak nature of the RRS spectra w
the conspicuous presence of the ‘‘forbidden’’ SPE peak! is
not specific to 1D systems, where our earlier theory12 was
applied. The ubiquitousness of the strong SPE spec
weight in the RRS experiment~independent of system di
mensionality, dependent only on the resonant nature of
experiment! suggests that the theoretical explanation for t
puzzle must arise from some generic physics underly
RRS itself, and cannot be explained by the non-generic
manifestly system-specific theories which have been m
occasionally in the literature. The resonant RRS theory p
sented herein~and in our previous paper! provides ageneric
explanation for the two-peak structure of the RRS spectra
establishing that the so-called low-energy anomalous S
feature in the RRS spectrum arises entirely from the reso
two-step nature of the RRS experiment, and cannot be
plained within any non-resonant theory.

In this paper we provide~within the resonant RPA
12532
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scheme! a compellingly generictheory for RRS experiments
by including the valence-band electrons during the scatte
processes for one-, two-, and three-dimensional semicon
tor systems, following our earlier short paper12 on 1D sys-
tems. We find that the RRS spectral weight at SPE energ
a strong function of the resonance condition—the SPE sp
tral weight is substantially enhanced when the incident p
ton frequency is near the semiconductor band-gap reson
energy, and decreases drastically away from the resonan
is important to emphasize that this feature of our the
agrees with experimental observations—the anomalous
peak exists only around resonance, and its spectral stre
decreases off resonance. Our results show similar qualita
behaviors for the RRS spectra in one-, two-, and thr
dimensional systems.

One dimensional systems24 actually pose a special~and
subtle! problem with respect to understanding the two-pe
RRS spectra, because 1D electron systems
generically25,26 Luttinger liquids ~i.e., non-Fermi liquids!
which have no quasiparticle~SPE! excitations whatsoever
The elementary excitations in 1D electron systems
bosonic spinon and holon collective modes. It is theref
conceptually problematic to comprehend how an anomal
‘‘SPE’’ feature can arise in 1D semiconductor quantum w
RRS spectra, as observed experimentally.1–3,10,11The issue of
understanding 1D RRS spectra from a Luttinger liquid vie
point was recently discussed13–15 in the literature, and we
refrain from discussing this point further in this paper since
is beyond the scope of our work. In particular, our use o
generalized RPA enables us to develop a unified consis
theory of resonant RRS in arbitrary dimensions~including
one dimension!, and the Luttinger liquid nature of 1D quan
tum wires is not of any relevance in our theory. We mentio
however, that a complete Luttinger liquid theory of 1D RR
experiments was recently developed,14 and this Luttinger liq-
uid theory builds on the resonant nature of our work p
sented in this paper.

The rest of this paper is organized as follows: in Sec
we describe the theory of nonresonant and resonant Ram
scattering process in the RPA. In Sec. III we present a
discuss our calculated RRS results for one-, two-, and th
dimensional GaAs semiconductor systems. We then sum
rize our work in Sec. IV. All the results shown in this pap
are for GaAs-based systems, but obviously the theory app
to any direct-band-gap semiconductor material.

II. THEORY

In Fig. 1~a! we depict the schematic diagram12,27–29 for
the two-step process~steps 1 and 2 in the figure! involved in
the polarized resonant Raman-scattering spectroscopy a
E01D0 direct gap of an electron-doped GaAs system29

where an electron in the valence band is excited by the i
dent photon into an excited~i.e., above the Fermi level!
conduction-band state, leaving a valence-band hole be
~step 1!; then an electron from inside the conduction ba
Fermi-surface recombines with the hole in the valence b
~step 2!, emitting an outgoing photon with an energy an
momentum~Stokes! shift. The RRS process is a two-ste
2-2
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RESONANT RAMAN SCATTERING BY CHARGE-DENSITY . . . PHYSICAL REVIEW B 65 125322
process involving steps 1 and 2, with the net result of th
being an elementary electron excitation created in the c
duction band through intermediate valence-band states
shown in Fig. 1. The nonresonant approximation to R
ignores the intermediate valence-band states, and app
mates the RRS process to take place entirely within the c
duction band of the system, as shown by the step 3 in Fig
The whole point of the theory12 developed in this paper i
that the nonresonant step 3 is not equivalent to the reso
scattering involving steps 1 and 2. Note that the reson
process involving steps 1 and 2 depends explicitly on
incident photon energy, while the nonresonant approxima
depicted in step 3 depends only on the energy differe
between the incident and scattered photons and not on
incident photon energy. This difference turns out to be c
cial in RRS theory, and the resonance condition in the in
dent photon energy gives rise to the anomalous SPE-
feature in the RRS spectra as shown below. Electron sp
conserved throughout the scattering processes, since w
considering only the polarized geometry where no spin-
occurs. As mentioned before we use the RPA in our the
taking care to generalize it to the resonant situation involv
steps 1 and 2. In the RPA one neglects all exchan
correlation effects~e.g., self-energy and vertex correctio
due to electron-electron interaction!, including only the long-
range Coulomb interactionVc(q) in the dynamical screening
by the electron system, so as to correct the noninterac
irreducible response function to the reducible response fu
tion. Following a preliminary discussion of the Coulomb i
teraction in one-, two-, and three-dimensional semicondu
systems in Sec. II A below, we then develop the nonreson
and the resonant RRS theories in Secs. II B and II C, res
tively. Our theory is entirely within the effective-mass a
proximation, and we parametrize the electron system in
semiconductor by electron (me) and hole (mh) effective
masses corresponding to the top~bottom! of the conduction

FIG. 1. ~a! Schematic representation of RRS in the direct-g
two-band model of an electron-doped GaAs nanostructure.v i and
v f are the initial and final frequencies of the external photons. S
1, 2, and 3 are described in the text~RRS involves steps 1 and
only!. ~b! and ~c! are Feynman diagrams of the electron-phot
scattering process described byp•A and A•A terms, respectively,
in the interacting HamiltonianHI . Solid and wavy lines represen
the electron and photon Green’s functions, respectively.
12532
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~valence! band and by a background lattice dielectric co
stant«0.

A. Coulomb interaction

The realistic~bare! Coulomb interaction in the artificially
confined semiconductor nanostructures depends strongl
the confinement geometry of the systems. In bulk 3D se
conductor materials, the unscreened Coulomb interaction
a long-ranged 1/r decay in the real space, and has the f
lowing Fourier transform in momentum space,

Vc
3D~q!5

e2

«0
E dr3

ur u
eiq•r5

4pe2

«0uqu2
, ~1!

wheree is the electron charge and«0 is the dielectric con-
stant of the background material~about 12 in the GaAs semi
conductor system!. We use the static («0) lattice dielectric
constant in our theory rather than the more conventional h
frequency («`) dielectric constant in defining the Coulom
interaction,Vc(q), because inclusion of«0 is known to ap-
proximately account for the polaronic electron-phonon int
action in the system, which is rather weak in GaAs beca
of its low Fröhlich coupling constant (;0.07). In a 2D semi-
conductor quantum-well system, modern fabrication te
niques have produced very narrow 2D wells~of nanostruc-
ture size,100 Å in GaAs in the confinement direction!,
leading to an almost pure 2D electron system. It is theref
a good approximation to assume the well width to be zero
our calculation, giving a 2D Fourier transform of the Co
lomb interaction:

Vc
2D~q!5

e2

«0
E dr2

ur u
eiq•r5

2pe2

«0uqu
. ~2!

Inclusion of the confinement wave-function effect in th
theory is straightforward, and leads to a form factorf (q)
(,1) multiplying Vc

2D(q) in the theory. For a 1D semicon
ductor quantum wire system, we have to consider the rea
tic finite width of the wire~i.e., the relevant 1D form facto
effect! because the 1D Fourier transform of 1/r potential
~i.e.,*dreiqr /ur u) diverges logarithmically, requiring regular
ization by a length cutoff associated with the typical confin
ment size. Therefore the Coulomb interaction for the fin
width quantum wire is obtained by taking the expectati
value of the 2D Coulomb interaction@assuming the width in
thez direction to be zero for simplicity as in our 2D model
Eq. ~2!# over the confinement wave function along the tran
verse direction~y! of the wire. We then have30 the following
Coulomb interaction matrix element in the 1D QWR stru
ture of finite width:

Vc,i j
1D ~q!5

e2

«0
E

2`

`

dy dy8E
2`

`

dx
e2 iqxuf i~y!u2uf j~y8!u2

Ax21~y2y8!2

5
2e2

«0
E

2`

`

dy dy8uf i~y!u2uf j~y8!u2K0~quy2y8u2!,

~3!

p

s
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DAW-WEI WANG AND S. DAS SARMA PHYSICAL REVIEW B65 125322
for interaction between electrons of subbandi and subbandj.
f i(y) is the electron wave function ofi th subband of the
QWR along the transverse direction. In this paper we ass
that only the lowest (i 51) ground conduction subband
occupied~i.e., subband spacingDE12.EF at zero tempera-
ture, and all the higher energy subbands are empty! and ne-
glect any intersubband transition, so that the subband in
i 51 throughout and will not be explicitly shown.K0(x) in
Eq. ~3! is the zeroth-order modified Bessel function of t
second kind. The exact form of wave functionf(y) depends
on the confinement geometry of the QWR system. For s
plicity we assume the QWR confinement potential to be
1D infinite square well in they direction. This turns out to be
a good approximation for the electrostatic gate-control
confinement in the presence of the self-consistent Har
potential due to the free electrons themselves.30 The confine-
ment wave functionf(y) is ~for the ground subband!

f~y!5HA2

a
cosS py

a D if 2a/2,y,a/2

0 otherwise,

~4!

wherea is the wire width in they direction. Using Eqs.~3!
and ~4! we can numerically calculate the effective 1D Co
lomb interaction30 for the semiconductor QWR system. Un
like the power-law behavior of Coulomb interaction in th
higher dimensions@Eqs. ~1! and ~2!#, Vc

1D(q) has a weak
logarithmic divergence, 22e2ln(qa)/«0, in the long-
wavelength limit (q→0). Because of this logarithmic depen
dence ofVc(q) on q ~asq→0), the precise value of the wir
width ~a! is not particularly important in our theory, makin
our simple infinite square-well approximation a reasona
one for our purpose.

B. Nonresonant Raman scattering

In the presence of an external photon field the interac
Hamiltonian between the free-electron gas and the radia
field is assumed to be obtainable from the standard ga
invariant prescription,31,32 p→p2eA/c, whereA is the ra-
diation field ~photon! vector potential operator andc the
speed of light. The Hamiltonian, including the radiation fie
and the electrons~i.e., the free carriers induced by doping! in
the semiconductor conduction band, can therefore be wri
as ~we neglect the spin-photon interaction considering o
polarized RRS spectra where spins do not play any exp
role!

~5!
12532
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in the effective-mass approximation, withme being the ef-
fective electron mass of the semiconductor conduction ba
We have made the transverse gauge choice31 ¹•A(xi ,t)50
for the radiation field, leading topi•A5A•pi as used in Eq.
~5!. H0 is the Hamiltonian of electrons interacting with Co
lomb potential without the radiation field, andHI is the
electron-photon interaction Hamiltonian which plays a c
cial role in the Raman scattering problem. Figures 1~b! and
1~c! correspond to the scattering processes induced by
linear (p•A) term and the quadratic (A2) term, respectively,
in the second quantization representation. Thep•A term cre-
ates and annihilates one photon in the state it acts on, ma
no contribution to the scattering rate in the first-order tim
dependent perturbation theory since there is no net chang
photon numbers. The quadraticA2 term, on the other hand
makes a nonvanishing first order contribution to the scat
ing rate because photons are created and annihilated a
same time in such scattering processes, as shown in Fig.~c!.
In principle the second-order contribution of thep•A term in
the time-dependent perturbation theory is of the same o
as the first-order contribution from theA2 term, as a simple
power counting in the coupling constante/c shows. This
second-order contribution, which plays a role in the RR
phenomenon, will be studied and discussed in more deta
Sec. III. We can simply neglect this (p•A) term in HI if we
are interested only in thenonresonant Raman scattering r
gime, either because the incident photon energyv i is of-
fresonance i.e., far from the direct band gap,Eg

0

(;1.5 eV in GaAs!, or because we only want to consider
nonresonant process as in step 3 in Fig. 1~a!. The A2 term,
being a scalar field operator which commutes with the el
tron field c(x) leading to the perturbative HamiltonianHI
~neglecting thep•A term!, is proportional to the electron
density operatorn(x)5(scs

†(x)cs(x). The nonresonan
~corresponding to the step 3 process in Fig. 1! Raman-
scattering intensity at frequency shiftv and momentum
transferq therefore can be calculated from the dynamic
structure factor~the imaginary part of the density respon
function! in the linear-response theory,20,21

d2s

dVdv
}2ImP~q,v!

5ImF i E
0

`

dteivt^@n†~q,t !,n~q,0!#&0G , ~6!

where ^•••&0 is the ground state expectation value, a
n(q,t) is the electron density operator;n(q,t)
5(k,sck1q,s

† (t)ck,s(t), with ck,s
† (ck,s) the electron creation

~annihilation! operator for momentumk and spins. In the
standard many-body theory, this~reducible! response func-
tion can be obtained by the reducible set of polarizat
diagrams20,21 ~Dyson’s equation; see Fig. 2! formed by the
irreducible conduction-band polarizabilityP0(q,v) for the
scattering process, where one has an electron and a ho
the conduction band,
2-4
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P~q,v!5P0~q,v!1P0~q,v!Vc~q!P0~q,v!1•••

5
P0~q,v!

12Vc~q!P0~q,v!
5

P0~q,v!

e~q,v!
, ~7!

wheree(q,v)[12Vc(q)P0(q,v) is the dynamical dielec-
tric function.

In the random-phase approximation~used in this paper!,
the irreducible polarizabilityP0(q,v) is approximated by
the noninteracting electron-hole bubbleP0

RPA(q,v), without
any self-energy or vertex correction. The RPA is known to
a good approximation16–18,27–29 in two- and three-
dimensional electron systems for calculating plasmon~or
CDE! properties. It is also a good approximation for colle
tive mode dispersion in one-dimensional electron syste
and gives a 1D plasmon dispersion which agree with
exact Luttinger-liquid theory.30 The expression of
P0

RPA(q,v) for a d-dimensional system is

P0
RPA~q,v!5

22i

~2p!d11E dndp G0~p,n!G0~p1q,n1v!

5
22

~2p!dE dp
n0~p!2n0~p2q!

v1 ig2p2/2me1~p2q!2/2me

,

~8!

whereG0(p,n) is the bare conduction-band electron Gree
function, and n0(p)5u(kF2upu) is the zero-temperatur
noninteracting momentum distribution function
conduction-band electrons.g is a phenomenological damp
ing term associated with impurity scattering~or other broad-
ening mechanisms!, which is taken to be small (g!EF) in
our numerical calculation. The damping termg introduces
finite widths to the spectral peaks in the dynamical struct
factor of Eq.~6!, but does not affect the peak position a
spectral weight in any significant method. The imagina
part of the irreducible polarizabilityP0(q,v) @which is now
approximated byP0

RPA(q,v) in our paper# gives rise to the
single-particle excitation, which is typically very small
long wavelengths due to the dynamical screening effec
Eq. ~7!. In Fig. 3 we show as shaded regions the SPE c

FIG. 2. Diagrammatic representation of the conduction-band
reducible response functionP0

RPA(q,v) and reducible respons
function P(q,v) in the standard random-phase approximatio
Vc(q) is the Coulomb interaction.
12532
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tinua @where ImP0(q,v)Þ0# within the RPA for one-, two-,
and three-dimensional systems. Note that, in contrast to
and 3D systems, the 1D SPE continuum is very restricte
the long-wavelength limit (q!kF). In higher dimensions, the
SPE continuum is gapless for any finite wave vector sma
than 2kF , but it is gapped in one dimension due to energ
momentum-conservation-induced phase-space restricti
Using Eqs.~6!–~8! we can calculate the nonresonant Ram
scattering spectra and the plasmon~CDE! dispersion~shown
in Fig. 3! to compare with the experimental results and t
resonant theory results discussed below. The calculated s
tra are shown in Figs. 4~a!–4~c! for one-, two-, and three-
dimensional systems, respectively. We discuss these re
in details in Sec. III.

C. Resonant Raman scattering

We now consider the full resonance situation~steps 1 and
2 in Fig. 1!, including the valence band whic
obviously3,12–14,32plays a crucial role in the RRS experime
because the external photon energy must be approxima
equal theE01D0 direct gap for the experiment to succee
In the RRS process the incident photon is absorbed an
scattered photon with the appropriately shifted frequen
~and wave vector! is emitted. Electron spin is conserve
throughout the scattering process. As discussed above,
are two steps@steps 1 and 2 in Fig. 1~a!# involved in the
polarized RRS spectroscopy, and both of these steps o
elastic scattering result from thep•A term of HI in Eq. ~5!
@see Fig. 1~c!#. When the incident photon frequency is equ
to the direct-band-gap energyE0, the second-order ‘‘reso
nant’’ perturbative contribution of thep•A term becomes
important and comparable to the first-order contribution
the A2 term, leading to an electron interband transition b
tween the conduction band and the valence band. The in
action Hamiltonian of the RRS theory, with external phot
momentumk and frequencyv, can be expressed in a secon
quantization representation as

r-

.

FIG. 3. Typical momentum-energy dispersion of the sing
particle excitation continuum~shaded region! and the collective
charge-density excitations~plasmons! of one-, two-, and three-
dimensional electron systems~calculated within the RPA!.
2-5
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FIG. 4. Dynamical structure factor obtained by a standard~non-
resonant! RPA calculation at zero temperature for~a! one-,~b! two-,
and ~c! three-dimensional electron systems ignoring valence-b
effects. Solid lines are calculated spectra in the long-wavelen
limit ~small momentum transfer,uqu50.1kF) and dashed lines ar
for the large momentum transfer@ uqu50.7kF in ~a! and ~b!, and
uqu50.4kF in ~c!# calculations. The electron densities used in t
calculation are 6.53105, 3.231011, and 1.831017 cm23 for one-,
two-, and three-dimensional systems, respectively. Finite impu
scattering (g51023EF) has been included to broaden the pea
The ripple in~b! and ~c! is of numerical origin.
12532
HI
k,v5e2 ivt(

p,s
@cp,s

† ~ t !vp2k,s~ t !1vp,s
† ~ t !cp2k,s~ t !#

1eivt(
p,s

@cp,s
† ~ t !vp1k,s~ t !1vp,s

† ~ t !cp1k,s~ t !#,

~9!

with ck,s and vk,s being the annihilation operators o
conduction- and valence-band electrons, respectively.
electron-photon coupling vertex, (2e/mecL)p•e ~wheree is
the light polarization!, has been assumed to be constant
simplicity. Applying the time-dependent perturbation theo
to the ground stateu0&, characterized by a conduction-ban
Fermi sea and no holes in the valence band~at zero tempera-
ture!, we have the transition amplitude from ground stateu0&
to thenth excited state,un&,

cn~T!5E
2T/2

T/2

dt1E
2T/2

t1
dt2^nuHI

k f ,v f~ t1!HI
ki ,v i~ t2!u0&,

~10!

where we have changed the time integration range from
conventional$0,T% to $2T/2,T/2% for the convenience of
changing variables later. By substituting the explicit form
HI and choosing the specific channel of backward scatte
~the so-called back-scattering geometry!, k i52k f5q/2 and
v i , f5V6v/2, without any loss of generality, we obtain th
transition rate~ignoring excitonic and self-energy effects! W
to be

W5 lim
T→`

1

T U(
n

cn~T!U2

5 lim
T→`

1

T (
p1•••p4
s1•••s4

E
2T/2

T/2

dt1E
2T/2

t1
dt2E

2T/2

T/2

dt18E
2T/2

t18

3dt28e
iV(t282t181t12t2)eiv(t281t182t12t2)/2

3^vp12q/2,s1

† ~ t28!vp2 ,s2
~ t18!vp3 ,s3

† ~ t1!vp42q/2,s4
~ t2!&0

3^cp1 ,s1
~ t28!cp22q/2,s2

† ~ t18!cp32q/2,s3
~ t1!cp4 ,s4

† ~ t2!&0 .

~11!

Since the valence band is completely filled in the grou
state at zero temperature, we have only one contractio
the valence-band electron operators, which is assumed t
noninteracting for simplicity,

^vp12q/2,s1

† ~ t28!vp2 ,s2
~ t18!vp3 ,s3

† ~ t1!vp42q/2,s4
~ t2!&0

5^vp12q/2,s1

† ~ t28!vp2 ,s2
~ t18!&0^vp3 ,s3

† ~ t1!vp42q/2,s4
~ t2!&0

5dp1 ,p21q/2ds1 ,s2
dp3 ,p42q/2ds3 ,s4

3eiEv(p12q/2)(t182t28)eiEv~p3)(t12t2), ~12!

whereEv(p)52p2/2mv is the kinetic energy of the valence
band electrons. Setting implicit time variables (t1,2→ t̄ 1

d
th

y
.

2-6



-

er

l
s

th

p
ci-

ic

.

ax

g
et
ec
on

-
le-
n

on-
c-
the
s

ing

ht

S
rre-
-
-

an-
s in
c-

RESONANT RAMAN SCATTERING BY CHARGE-DENSITY . . . PHYSICAL REVIEW B 65 125322
6t1/2 and t1,28 → t̄ 26t2/2), and using the quasiparticle ap

proximation for the electron operator,cp,s( t̄ 2t/2)
5cp,s( t̄ )e2 iEc(p)t/2, we can obtain the transition rate, aft
evaluating thet1 and t2 integrals,

W5 lim
T→`

1

TE2T/2

T/2

d t̄1E
2T/2

T/2

d t̄2 eiv( t̄ 22 t̄ 1)

3 (
p1 ,p2
s1 ,s2

A* ~p1 ,q!A~p2 ,q!^cp11q/2,s1
~ t̄ 2!cp12q/2,s1

†

3~ t̄ 2!cp22q/2,s2
~ t̄ 1!cp21q/2,s2

† ~ t̄ 1!&0

5E
0

`

dt eivt^N†~q,t !N~q,0!&0 , ~13!

where the resonant ‘‘density’’ operatorN(q,t) is defined to
be

N~q,t !52(
p,s

A~p,q!cp2q/2,s~ t !cp1q/2,s
† ~ t !

5(
p,s

A~p,q!cp1q/2,s
† ~ t !cp2q/2,s~ t ! ~14!

for qÞ0 with the matrix elementA(p,q):

A~p,q!

5
1

Eg2V1@Ec~p2q/2!1Ec~p1q/2!#/22Ev~p!1 il

5
1/EF

Ev1~11j!~ p̃221!1q̃2/41 il/EF

. ~15!

Here Ev[EF
21@Eg1(11j)EF2V# with j[mc /mv ; p̃

[p/kF ; q̃[q/kF ; and EF5Ec(kF) is the Fermi energy of
the conduction-band electrons.l is a phenomenologica
broadening factor we introduce to include roughly all po
sible broadening effects, e.g., the finite imaginary part of
electron self-energy~the quasi-particle life time! the finite
impurity or disorder scattering, and any broadening or dam
ing arising intrinsically from the photon field or the asso
ated optical scattering. We takel to be small (50.02EF) in
the numerical calculation. Note that the phenomenolog
parameterl is a resonance broadening parameter~associated
with the band to band process!, to be contrasted with the
simple spectral broadening parameterg of Eq. ~8!, which is
purely a conduction-band phenomenological parameter
our leading order RRS theoryl @of Eq. ~15!# andg @of Eq.
~8!# are completely independent phenomenological rel
ation or damping terms~both of which should be small,g
and l!EF , for our leading order theory to be sensible!.
Calculation ofg and l is beyond the scope of the leadin
order theory—it is entirely possible that in a more compl
theory including quasiparticle self-energy and vertex corr
tions as well as electron-impurity scattering and the electr
photon interaction,g andl will turn out to be related.
12532
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Comparing Eqs.~13! and ~14! with Eq. ~6!, we find that
the effect of resonance~i.e., photon-induced interband tran
sition! on the conduction-band electrons is the matrix e
mentA(p,q), which arises from the time difference betwee
the excitation of one electron from valence band to the c
duction band~step 1! and the recombination of another ele
tron from inside the conduction-band Fermi surface with
hole in the valence band~step 2!. The resonance condition i
parametrized by the dimensionless parameterEv , with Ev

50 being the precise resonance condition. In the follow
discussion we define ‘‘off resonance’’ asuEvu@1 and ‘‘near
resonance’’ asuEvu!1. Off resonance the spectral weig
decreases asuEvu22, as can be seen from Eq.~15!. Near
resonance the singular properties ofA(p,q) enhances the
spectral weight nontrivially. The calculation of the RR
spectrum is therefore reduced to the evaluation of the co
lation function of Eq.~14!, which in the resonant RPA ap
proximation~i.e., neglecting all vertex correction of the irre
ducible polarizabilities, see Fig. 5! is obtained to be

W'2ImFP2
RPA~q,v!1

P1
RPA~q,v!P̄1

RPA~q,v!Vc~q!

e~q,v!
G ,

~16!

where

P2
RPA~q,v!

5
22

~2p!dE dp
uA~p,q!u2@n0~p1q/2!2n0~p2q/2!#

v1 ig2Ec~p1q/2!1Ec~p2q/2!

~17!

and

P1
RPA~q,v!

5
22

~2p!dE dp
A~p,q!@n0~p1q/2!2n0~p2q/2!#

v1 ig2Ec~p1q/2!1Ec~p2q/2!
, ~18!

FIG. 5. Diagrammatic representation of the resonant Ram
scattering response function including the valence-band electron
the RPA calculation. Different kinds of irreducible response fun
tions are defined and explained in Eqs.~17!–~19!, and the matrix
elementA(k,q) is defined in Eq.~15!.
2-7
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P̄1
RPA~q,v!

5
22

~2p!dE dp
A* ~p,q!@n0~p1q/2!2n0~p2q/2!#

v1 ig2Ec~p1q/2!1Ec~p2q/2!
.

~19!

The dynamical dielectric function,«(q,v), is the same as
defined in Eq.~7! within the same RPA formulas@Eq. ~8!#.
Note that resonance effects arising fromA(p,q) „i.e., consid-
ering the full two-step process involving both conducti
and valence bands rather than just the effective single-
process@step 3 of Fig. 1~a!# within the conduction band… are
nonperturbative, and depend crucially on the exact value
the incident photon energy. In the nonresonant theory,
contrast, the incident photon energy does not enter into
calculation of the spectra, only the frequency shiftv matters.

III. RESULTS AND DISCUSSIONS

In Figs. 3 and 4 we show the energy dispersion and
dynamical structure factor, respectively, of the nonreson
RRS spectra in the RPA theory for 1D, 2D, and 3D semic
ductor GaAs systems. We emphasize that all earlier theo
ical works on RRS spectroscopy, with the only exception
our earlier brief communication,12 use the nonresonant ap
proximation. The sold lines in Fig. 4 are the RRS spectr
profiles in the long-wavelength limit~small momentum
transferuqu50.1kF), while the dashed lines are the results
larger momentum transfer for comparison.~The experimen-
tal situations correspond to the long-wavelength limit, w
uqu!kF .) Two elementary excitations are observed in t
nonresonant spectra~Fig. 4! at two separate peaks: one
single-particle excitation at lower energy, and the other
collective charge density excitation at higher energy.~Note
that we use a very small damping,g51023EF , in Fig. 4 in
order to resolve the small SPE weights; largerg ’s smear out
the SPE continuum completely.! We first mention that the
RPA calculated energy dispersions of both modes~SPE and
CDE! agree quantitatively with the experimental RR
results.1,16,18,19,24,33 However, the theoretically calculate
nonresonant dynamical structure factor in Fig. 4 is entir
dominated by the collective CDE mode; the SPE mo
while being present in the results, carries a negligible a
unobservable spectral weight. This is entirely inconsist
with the ‘‘two-peak’’ structure observed in the experimen
RRS spectra,1 where the two peaks carry comparable spec
weights. In the large momentum-transfer results~which are
outside the experimentally accessible regime! shown in Fig.
4 ~dashed lines!, one finds that SPE spectral weights a
somewhat enhanced over the long-wavelength results,
correspondingly CDE weights decrease for large momen
scattering due to the strong Landau damping of plasm
~CDE! to the single-particle excitations which become
lowed at large wave vectors. The SPE spectral weight is
much weaker~by three orders of magnitude! than the CDE
weight even at large wave vectors, and, in addition, the
coherent SPE continuum is severely broadened in this la
12532
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momentum scattering channel. Note that this situation~i.e.,
negligible theoretical spectral weight at SPE! does not
change9,15,22,34even if one goes beyond the RPA and includ
vertex corrections~e.g., the Hubbard approximation or th
time-dependent local density approximation! in the irreduc-
ible response function. Therefore, as long as resonance
fects are neglected@and thus one includes only step 3 of Fi
1~a!, ignoring the interband resonance process#, the calcu-
lated RRS spectra at experimentally accessible wave vec
produce only observable CDE peaks in contrast to the
perimental two-peak situation which, in addition, at res
nance always finds the SPE spectral weight to be compar
to the CDE spectral weight.1–11,19,29The nonresonant theor
is therefore in qualitative disagreement with experiments
it fails to account for the observed two-peak RRS spectr35

In Figs. 6 and 7 we show our results for the polariz
RRS spectroscopy of the same 1D, 2D, and 3D systems a
Fig. 4 within the resonant RPA theory@Eqs.~13!–~19!# in the
long-wavelength region (uqu50.1kF). RRS spectra for differ-
ent resonance conditions, i.e., for different values ofEv , are
shown in Fig. 6 with a larger value of the impurity broade
ing parameter (g50.05EF , 50 times greater than theg used
in Fig. 4! in order to compare with the experimental RR
profiles. The lower-~higher-! energy peak is associated wit
the SPE~CDE! of the electron systems. The most importa
qualitative feature of the resonant theory results is the g
enhancement of the SPE spectral weight compared with
nonresonant theory. Figures 6~a!, 6~b!, and 6~c! ~correspond-
ing to the results of 1D , 2D, and 3D systems, respective!
have qualitatively very similar behaviors:~i! the overall
spectral weights decay very fast off resonance~i.e., for large
uEvu); ~ii ! the peak positions of the SPE and CDE in Fig.
are the same as the nonresonant excitation energies in F
i.e., resonance does not affect the energy dispersion of
elementary electronic excitations;~iii ! the spectral weight of
the SPE~lower-energy peak! is essentially zero far away
from resonance (uEvu.0.2) where the CDE~higher-energy
peak! dominates similar to the nonresonant spectra in Fig
~except for the larger value ofg used in Fig. 6!; and~iv! near
resonance (uEvu,0.2), the SPE spectral weight is great
enhanced—in fact, the SPE spectral weight becomes com
rable to or even larger than the CDE spectral weight, in sh
contrast to the nonresonant theory~where the SPE weight is
always extremely small at long wavelength!. In Fig. 7 we
plot our calculated RRS spectral weight ratio of CDE/SPE
a function of the resonance condition, explicitly showing t
dramatic effect of resonance on the SPE spectral weight.
emphasize that this spectacular enhancement of the
spectral weight in the full two-step resonant scattering p
cess~over the simple one-step nonresonant effective theo!
is a nonperturbative effect in our theory. Our calculated sp
tra at resonance are in excellent qualitative agreement
the corresponding experimental RRS spectra shown in R
1–3, where the SPE spectral weight dies off rather quickly
the incident photon energy goes off resonance. From
results presented in Fig. 7, we also find that the spec
weight ratio of the CDE to the SPE has very similar res
nance behaviors for systems of different dimensionaliti
consistent with the experimental findings, and indirectly e
2-8
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FIG. 6. Dynamical structure
factor in the resonant RPA calcu
lation for ~a! one-, ~b! two-, and
~c! three-dimensional electron
systems incorporating valence
band electrons. We choose th
resonance broadening factorl to
be 0.02EF , and the finite impurity
scattering factorg to be 0.05EF ,
in order to attain agreement with
the experimental data~the impu-
rity broadening is still rather smal
since g/EF51/20!. Other system
parameters are the same as
Fig. 4.
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suring the validity of RPA theory in the RRS spectroscopy
least in the experimental parameter regimes.

To understand the resonance condition dependence~on
Ev) of Fig. 7, we should explain the resonance effects
only on the SPE continuum, but also on the CDE mod
around the resonance region. In some sense the extreme
nance conditionEv50 may be thought of as providing a
indirect mechanism for the breakdown of the wave-vec
conservation for the scattering process considered o
within the conduction band in the prevailing nonreson
theory where the virtual valence-band effects are igno
@i.e., step 3 in Fig. 1~a!#—thus our theory preserves the e
sence of the ‘‘massive’’ wave-vector breakdown mechan
proposed in Ref. 5, but in a very indirect sense because
impurity scattering is involved. Instead, participation by t
valence-band introduces an effective mechanism for wa
vector conservation ‘‘breakdown’’ through a virtual inte
12532
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band process not included in the nonresonant theory. In
ticular, the functionA(p,q) defined in Eq.~15!, provides the
‘‘wave-vector conservation breaking’’ mechanism by mixin
conduction- and valence-band wave vectors nontrivially
A(p,q) is a constant, there is no resonant enhancement o
SPE mode. Equivalently, the dependence ofA(p,q) on two
different wave vectors is the effective wave-vector conser
tion breakdown mechanism. Mathematically we can s
from the RPA dynamical structure factor defined in Eq.~16!,
where the CDE spectral weight is given by the numerator

the second term,P1
RPA(q,v)P̄1

RPA(q,v)Vc(q), at the CDE
dispersion energy determined by the zero of the dielec
function@«(q,v)50#. Off resonance, the functionA(p,q) is
just a slowly varying function of momentump in the integral
rangeup6kFu,q/2 obtained by the occupancy factorn0(p
1q/2)2n0(p2q/2), in Eqs. ~17!–~19!, and therefore the
2-9
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RRS spectra show behavior~i.e., the CDE dominance th
SPE! similar to the standard RPA results~see Fig. 4! except
for the overall decreasing weight factorEv

22 . Near resonance
(Ev;0), however, the resonance functionA(p,q) in Eqs.
~18! and~19! can essentially cancel the contribution from t
other integrand in the polarizabilities~due to its sign change
at upu5kF), so that the CDE spectral weight@coming essen-
tially from the second term in Eq.~16!# cannot be as strongly
enhanced by resonance as the SPE weight, which a
mostly from P2

RPA(q,v) in Eq. ~17!. Therefore, the sign
change of the resonant function,A(p,q), is responsible for
the relatively weaker enhancement of the CDE weight co
pared to the SPE weight near resonance. We note that
~16!, defining the resonance spectral weight in our theo
has two terms, both of which are important in giving rise
a strong SPE spectral feature in the RRS spectra under
nance conditions.

Finally we give a simple explanation for the breakdow
of Luttinger liquid theory in the 1D RRS process near re
nance. It is well known that 1D electron systems are b
understood as Luttinger liquids, where collective excitatio
are the only possible excitations and no single-particle e
tations exist for the conduction-band electrons. Howev
Luttinger-liquid behavior depends crucially on the char
conjugation symmetry, where the Hamiltonian remains
same after electrons and holes are exchanged abou
Fermi surface. When the valence band is intrinsically
volved near resonance in the RRS process, such elec
hole conjugation symmetry is totally broken, because
filled valence band is effectively ‘‘overlapped’’ with the con
duction band at Fermi surface. In other words, an elect
below the conduction-band Fermi surface now effectiv
has a new channel, not restricted by the small 1D ph
space, to be excited above the conduction Fermi sur
through the two-step resonant interband transition, thro
the valence-band virtual transition. An estimated resona
condition for this apparent breakdown of Luttinger liqu

FIG. 7. Ratio of the resonant Raman-scattering spectral we
~CDE to SPE! as a function of the resonance energyEv , in one-,
two-, and three-dimensional systems. Off resonance,uEvu>0.2,
CDE always dominates SPE in the spectra, but near resona
uEvu,0.2, the SPE weight could even be stronger than the C
weight. All system parameters are the same as in Fig. 6.
12532
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behavior in 1D RRS spectroscopy can therefore be obta
by uEvu,qvF /EF52(q/kF), which is 0.2 forq50.1kF and
is consistent with our numerical result shown in Fig. 7. W
therefore physically explain the failure of the theoretical
tempt of using LL theory to study 1D RRS experiments ne
resonance.14 The qualitative similarity of the experimenta
RRS results for one-, two-, and three-dimensional syste
confirms our theory, which is based on the conventio
Fermi-liquid model. We note, however, that the Luttinge
liquid description of 1D systems was recently theoretica
modified14 in an attempt to understand the observed R
spectra, but the applicable theory is quite subtle and bey
the scope of this paper.

IV. SUMMARY

In summary, it may be important to emphasize that
striking phenomenological similarity in the experimenta
observed RRS spectra in one-, two-, and three-dimensi
systems is a strong indication that generic interband re
nance physics as studied here~within a resonant RPA
scheme! plays a fundamental role in producing the low
energy ‘‘SPE’’ feature in the polarized RRS spectra, whi
cannot be explained by the standard~nonresonant! theory or
any other nongeneric~system-dependent! theories. Our
theory can also be applied to depolarized RRS experime
where both single-particle and spin-density excitations
important, but the exchange energy should be includ
properly9,34 to separate these two excitations which are
generate in the regular RPA calculation. Once exchange
relation effects are invoked to distinguish the SPE’s a
SDE’s ~with the SDE’s lying below the SPE’s by the ex
change energy!, our resonant theory can account for the o
served two-peak structure in the resonant depolarized R
experiments in a way very similar to the theory develop
herein for the SPE’s and CDE’s in the polarized RRS exp
ments. To summarize our results, we have develope
theory for resonant Raman-scattering spectroscopy in o
two-, and three-dimensional semiconductor structures
considering the full two step resonance process involved
the scattering of external photons. We find that at resona
the RRS spectra have considerable weight at the SPE, en
with the SPE weight decreasing off resonance. There is
qualitative difference in the RRS spectra between system
different dimensions. Our results are in qualitative agreem
with experimental findings, and provide a generic theoreti
explanation for a ubiquitous puzzle which dates back m
than 25 years. As a concluding note we point out that it m
be somewhat misleading to call the additional feature in
RRS spectra an ‘‘anomalous’’ SPE mode, as has routin
been done in the literature—a pure SPE mode arises from
imaginary part of the irreducible polarizability function, a
given within the RPA by Eq.~8!, whereas the anomalou
additional RRS feature arises primarily from the presence
the P2

RPA term @Eq. ~17!# in our resonant RPA theory@Eqs.
~16!–~19!#, which is ~related to, but! quite different from the
irreducible polarizability,P0

RPA @Eq. ~8!# by virtue of the
nontrivial nature of the resonance functionA(p,q). Finally,
we mention that a very recent experimental report appea
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in the literature,3 specifically verifying the essential feature
of our theory.12 However a complete quantitative understan
ing of experimental results may very well require the inc
sion of additional effects~e.g., excitonic corrections, an
many-body effects! beyond the scope of our work.
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