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We systematically investigate the mode dispersion and spectral weight of the elementary excitation spectra
in one-dimensional continuum and lattice electron systems by using the RPA, the Luttinger liquid model, and
the Hubbard model. Both charge and spin excitations are studied in detail and compared among the theoretical
models. For the lattice Hubbard model we use both Bethe-ansatz equations and Lanczos-Gagliano method to
calculate dispersion and spectral weight separately. We discuss the theoretically calculated elementary excita-
tion spectra in terms of the experimental inelastic lifRman scattering spectroscopy of one-dimensional
(1D) semiconductor quantum wire systems. Our results show that in the polérzeaon-spin-flip Raman-
scattering spectroscopy, only the 1D charge density excitations should show up with observable spectral weight
with the single-particle excitation§n random-phase approximatipor singlet spin excitationgin the Lut-
tinger model and the Hubbard mogélaving negligible spectral weight. The depolarizegdin-flip) Raman-
scattering spectra manifest the spin density or the triplet spin excitations. We also provide a qualitative
comparison between the continuum and the lattice 1D elementary excitation spectra.
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I. INTRODUCTION evaluation of the density-density correlation funct{or po-
larized spectrumand the spin-density correlation function

The goal of this paper is to investigate theoretically the(for depolarized spectrumwhose imaginary parts are pro-
charge and spin elementary excitation spectra as well as thgdortional to the spectra measured in the experiments. This
spectral weights in one-dimensionallD) electron approach of identifying the measured elementary excitation
systems;~3both for a continuum jellium electron gas and for spectra in the Raman-scattering experiments as the charge
an atomic lattice model. Our calculatiofia particular, our  (polarized spectjeor the spin{depolarizefl density correla-
spectral weight calculationshould apply to the experimen- tion function of the electron system in the conduction band
tal Raman-scattering d4t& if the resonance effects are dy- has a long and fairly successful histdhjn the semiconduc-
namically unimportant in the interpretation of the Ramantor structures. We take the same approach here, and construct
experiments. We refer to our calculations as the nonresonanur charge and spin-density correlation functiofehich
Raman scatteringNRS) theory where only the conduction- give the spectral strengths of the elementary excitations
band electrons are taken into account as opposed to the regbrough their imaginary parts or the corresponding dynami-
nant Raman scattering where both the conduction band anzhl structure factoysentirely from the conduction-band car-
the valence band participate. In fact, the theory developed iners, ignoring all effects of the valence band in the reso-
this paper has been the standard theory for discussing theance process.
resonant Raman-scattering spectroscopy until very recently There has been one persistent feature in the experimental
when several publicatiois’ dealing with the full subtleties Raman spectra of semiconductor systems, including 1D
of the resonance effect have appeared in the literature. WOWR structures, which does not seem to have an obvious
emphasize that, quite apart from the resonant Ramarexplanation in terms of the nonresonant theory discussed in
scattering spectroscopy, theoretical results presented in thibis paper. There is often a low-energy spectral peak in the
paper stand on its own as a comprehensive theory for thpolarized spectra at an energy well below the expected col-
elementary excitation spectra of 1D electron systems. lective charge-density excitatiofCDE) peak (and in addi-

In this paper, we will study the standafdonresonant tion to the charge-density excitation peak, which always
Raman-scattering spectroscopy in three theoretical modelshows up at the usual enejgyrhis additional peak occurs
the random-phase-approximati®RPA) Fermi-liquid model, around the single-particle excitation energy, which typically
the Luttinger liquid(LL ) model, and the 1D Hubbard model. contributes little to the dynamical structure factae., the
As emphasized above, by “nonresonant” we mean that thelensity correlation functionat the low wave vectorsq(
theory neglects all effects of the valence band in resonankkg) of Raman-scattering experiment, and therefore should
Raman scatteringwhich is a two-step process, with the in- have negligible(unobservablespectral weight. There have
cident photon being absorbed by a valence-band electrobpeen many suggestions for the resolution of this puzzle
which thereby gets excited into an excited conduction-bandnamely, why the single-particle excitation weight is en-
state with an electron from inside the conduction-band Fermhanced in the density correlation spectjurand we will
surface subsequently combining with the valence-band holquantitatively consider several of these suggestions in this
with the emission of the scattered photoif the valence paper. Our conclusion, based on the results presented in this
band can be ignored, then only conduction-band density flugeaper, is that this puzzle in all likelihood arises necessarily
tuations are responsible in the linear response theory of thieom the resonant nature of Raman-scattering experiments,
scattering process. The calculation is then simplified to thes has recently been argued in the literafafayhich is be-
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yond the scope of this paper. Our critical quantitative con- k
sideration of the several suggested scendniathin the non- "
resonant theory of using conduction-band properties )only

for explaining why the single-particle excitation has large Vi)
spectral weight shows that none of them is capable of resolv- _
ing this problem quantitatively. While studying the 1D el- - @ * @ @

ementary excitation spectra is the primary goal of this paper,

considering the single-particle excitation spectral weight is-
sue in the nonresonant Raman scattering is one of our impor- + ?@ ------- @ ------- @%i
tant secondary goals.

We first present the results of the Fermi-liquid random- ) ) . . .
phase-approximatiofRPA) calculation for this problem in FIG. 1. Diagrammatic representation of th(_e conductlgn-bfa_nd ir-
Sec. II. The RPA calculation has been shown to give a goodeducible polarizability ITo(q,») and reducible ~polarizability
descriptiod for the dispersion relations of the elementary 11(d.®) in standard RPA calculation/c(q) is the Coulomb inter-

excitations in comparison with the experimental restif, ~ 26tion-

both intersubband and intrasubband 1D excitatidr®eing N
a standard Fermi liquidFL) theory, however, the RPA cal- on RPA ar_md the Hubbard approxmgﬂdﬁA) _except to note
here that in RPA one uses the noninteracting electron polar-

culation is unable to explain the relatively large spectral.

weight of the “single-particle excitation({SPB in the polar- |gability f‘."‘C“O” (Fig. 1 _for the irreducible response fun_c-
ized spectrum of the experiment as discussed above. We irt1'-On anq in the HA one mgludes an approximate local-field
clude the effects of the breakdown of momentum conservagorreCtlonG(q) to crudely incorporate the exchange vertex

: . : : : correlations. We use the following simple form for the 1D
tion and the nonparabolic energy dispersion in Oun’ bard local-field correction:

calculation to check if they can explain the SPE feature

within RPA, but neither gives qualitatively correct results for V. (JPT+KE
the polarized spectrum. In the Luttinger liquid model we G(q)ZEM, (1)
present in Sec. lIl, we finderoweight at the SPE energgs 2 V(a)

we should, since in the LL model there are no single-particleyyherev,(q) is the 1D Coulomb interaction arg is the 1D

like quasiparticle excitationsand all the spectral strength is germi wave vector. In the long-wavelength limig—0,

at the charge boson mode, which is exactly the CDE mode ig5(q)— 0 for Coulomb interaction and the RPA result is re-
RPA. In Sec. IV, we use the 1Uatt|c¢) Hubbard model with  stored in the long-wavelength limit as it must. In Fig. 2 we
repulsive on-site spin-dependent interaction to study thl?ﬂot the dispersion and spectrum of the 1D charge density
problem. The study of 1D elementary excitations and thegjlective excitation(usually called the 1D plasmon made
associated spectral weights in the Hubbard model is one Qfjithin both the RPA and the Hubbard approximation—the
our main results in this paper. This Hubbard model study wagjasmon mode is defined by the zero of the dielectric func-

originally motivated by the suggestion in Ref. 13 that a pos+jon and the intensity or the spectral weight is given by the
sible way to interpret this SPE puzz{éhe existence of a imaginary part of the dielectric functiofie., the dynamical
single-particle peak in Raman scattejirig 1D should be  strycture factd?). In Fig. 2a), we find that the plasmon
different from those in higher dimensions, and the so-calle¢inergy is actually larger than the SPE continuum energy for

SPE peak may be arising from the spin-singlet excitationg,| momentum, so that there is no Landau damping in the 1D
(SSB of interacting 1D systerrﬂé:l“Therefpre we choose t0 gystem within the RPA calculation. The 1D plasma disper-
study in detail the 1D Hubbard model, in which the spin-gjon has no gap in the long-wavelength limit, but an infinite
dependent interaction is expected to enhance the contrlbutlog]ope atq=0 due to the logarithmic divergence of the 1D
of the spin-singlet excitation, which is proposgdf as the  coulomb interaction.
extra SPE-like feature show[ng up in the experiment. Al- |, Fig. 2(b), we also show the typical calculated polarized
though the Hubbard model is a lattice model and conserrs spectrum using a phenomenological broadening factor,
quently may not apply directly to the continuum QWR sys-,,— 05, , which may be arising from impurity scattering.
tem, we argue that it is useful to understand the OIE3ta'|66%/e find that the spectral weight of CDE is much larger than
excitation spectra in the 1D Hubbard model in the context ok 5t of SPE(about one thousand timesin the same figure
this problem because one can quantitatively study the intefye show the HA results as well. We find that while the vertex
acting 1D elementary excitation spectra using the Hubbardyrection indeed increases the SPE weight somewnhat rela-
model. tive to the CDE weight, the HA is still completely unalgley
a factor of 100 to explain the experimental findifgf the
SPE mode being comparable in the intensity to the CDE
mode (double peak structuyein the polarized RRS
The Fermi-liquid calculation of the elementary excitation spectrunf. Moreover, if the electron energy dispersion is lin-
spectrum of an electron system has been extensively digar (as it is close to the Fermi poiptthe SPE excitation
cussed in the literature*®=*>156we use two standard ap- spectral weight disappears. This indicates that the band cur-
proximations: RPA and the Hubbard approximationt’We  vature aroundkg plays an important role in forming the SPE
refer the reader to the existing literattité *215-1%or details ~ peak in the experiments. For example, in the linearized LL

Il. FERMI-LIQUID MODEL
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0.1 0.2 0.3 0.4 0.5 wherel is a(phenomenologicadimensionless factor denot-
w/Es ing the strength of the breakdown of momentum conserva-

tion. ForI'—0 we get back the original spectrum. In Fig.
4(a), we show the numerical calculation results of this effect
by applying Eq.(2) onto the RPA result. At first sight, one

FIG. 2. (a) The energy-momentum dispersion relation for the
plasmon mode and the SPE region of 1D syst@nThe dynamical

structure factor of the polarized RRS spectrum in RPA calculation,, -
for the 1D quantum wire system gt=0.1k, . Vertex correction in Tfinds that finitel does decrease the peak value of CDE and

Hubbard approximation is also shown for comparison. Parametefe"h@nce the SPE weight. FBr>0.5, however, we find that

are the same as the experiments in Ref. 4. Finite broadening factdf€ SPE peak merges into the very broad CDE peak, which is

is involved to present the delta-function peaks. broadened also by the breakdown of momentum conserva-
tion. In other words, the breakdown of momentum conserva-

theory the SPE will have exactly zero spectral weight Belowtion reduces the CDE peak strength and also broadens its
yt y Z€ro sp Ight. width without changing either the total CDE spectral weight
we consider the band nonparabolicity effect explicitly.

In discussing the spin-desity excitaliGBDE) spectrum in or the SPE weight qualitatively. Therefore, in our direct nu-

the depolarized coemetry we note that the depolarized s err]erical calculation, we show that the breakdown of momen-
P 9 y we he depola  SP€%im conservation is not the candidate mechanism to provide
trum of 1D electron systems in the RPA is just the imaginar

part of the noninteracting polarizability function (Ii) Eﬁ;ﬁ?jiiﬁ%ﬁ: weight comparable to the CDE weight in
which is the same as the SPE in the polarized spectrum. Thus We now discués the same issue by considering the band

mtthRI;PA the de_polar_|zed mq?he d|sgekr)3|or:j IS _|dentg:al tononparabolicity effect of the electron energy dispersion. We
€ energy, 1.ep=que With a q- broadening. ©N€ ocicate the RPA spectral weight including band nonpara-

the vertex correction induced energy shift. In Fig. 3 we show

the SDE spectrum obtained by calculating the spin-density E(q;\) _( q )2

from the SPE mode. [E(kg;N)=Eg] for all X and changes the electron effective
Beyond the standard RPA calculation, we include twomassmg(\)=m/(1—\) consistently. In Fig. &), we show

of these corrections are likely to transfer some large waveweight. Using largei will cause greater blue shifts in both

vector SPE weight to smaller wave vector. For the breakSPE and CDE energies due to the increase of Fermi velocity,

. 3

should note, however, that when vertex corrections such as ig . . : " a :
the Hubbard approximation are taken into account, the spe G—g;)celtéigﬁg an additionalg™ term in the electron energy
tra of the SDE will not be exactly the same as the SPE due to '

q\* (a)?
correlation function in RPA and also in the Hubbard approxi- Er  \ke A (k_F) - k_F)
mation. The vertex correction shifts the SDE peak to lower
energy(an excitonic shift in the HA and thus separates it This expression oE(q;\) keeps the Fermi energy constant
nongeneric effects, the breakdown of momentum conservahe calculated polarized RRS spectrum for different values of
tion (arising from impurity scattering, for exampland the A=<0.1. We find that the enhancement of the SPE weight is
nonparabolicity of electron energy dispersion, because bothery small, while the CDE peak almost keeps the same

035103-3



D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103
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0.1 0.2 0.3 0.4 0.5 where the  excitation  energy, wg“’=|q|vp,(,(q)
w/Ee =|alve/K,,(9), and the charge sector Luttinger exponent
o , . e K,(q) is
[ 0.006 ; ]
—~ f ) 1 —1/2
2 [ooos} | ] B 2Vc(q)
_e' 0.0021 1: 4 :E
2 oo ] while K,(gq)=1 in the spin sector for the spin-independent
= oF o0 o1 02 o3 | ] Coulomb interaction.
g | : ] It is clear that the above results are completely spin-
£ 1 CDE ] charge separated, which is another important feature of the
of . . g LL model. One should note that there is no spectral weight in

0.1 0.9 0.3 0.4 0.5 X,(d,0) at o=qug for any SPE modédor, for that matter
w/Er any mode. This shows that the small SPE pgakmpared to
CDE) in the Fermi-liquid RPA theory is totally absent in the
FIG. 4. The dynamical structure factor of the polarized RRS| | theory. Thus any possible explanation within the LL
spectrum calculated by includin@) the breakdown of momentum theory for the anomalous low-energy peak in the polarized
conservation andb) the nonparabolic energy dispersion. The dot, RRg spectra must arise from some maeelg., a multiboson
dashed, and solid lines if@) represent the broadening parameter .qde or an SSE motiether than the SPE mode which is
I'=0, 103, and 4x 10 3, respectively[see Eq.(2)], and in (b) completely absent in the LL theory.
represent the nonparabolicity parameter0, 0.02, and 0.1, re- We note one other aspeithe spin-charge separation men-
spectively[see Eq.(3)]. All these effects cannot enhance the SPE,[i ned above of the LL theory in this context which has
spectral weight to be comparable to CDE in the reasonable range %feated some minor confusion. The spin-charge separation of
Torh. the LL theory has nothing whatsoever to do with the separate
. . . , existence of SDE/CDE in the depolarized/polarized RRS
which disagrees with the experimental resufiste that the  ghecira. The collective spin- and charge-density excitations
standard RPA results provide very good agreement with thg e completely distinct excitations in the FL theory as well—
experimental results in the excitation ener§lie3herefore they are the poles of the appropriate sgiar SDE) and
the nonparabolicity effect cannot enhance the SPE SpeCtrEharge(CDE) density correlation functions of the system

weight to be comparable to the CDE weight. which have totally different energies and selection riies,
whether there is a spin flip or Noin any reasonable theory.
IIl. LUTTINGER LIQUID MODEL The reason spin-charge separation is rather complete in the

LL theory is because the Luttinger liquid does not have any

The Luttinger liquid modél***is thought to provide a quasiparticles or single-particle excitations—it has only col-
generic low-energy description for 1D electron systemslective spin and charge excitations which are poles of differ-
which are characterized by the LL fixed point in the renor-ent correlation functions and are always separate. Indeed,
malization group sense. The standard and exactly solvablsigher dimensional systems, such as 2D and 3D GaAs struc-
LL model is the 1D electron gas with a linear dispersiontures, exhibit qualitatively similar RRS spectra as in the 1D
[E(k)=rve(k—rkg)] around Fermi points £kg) at each system with the CDE peaand a weak SPE-like low energy
branch  ¢==x1) and with short-ranged forward feature showing up in the polarized spectra and the SDE
interaction™? Using bosonization method and a linear trans-peak showing up in théspin-flip) depolarized RRS spectra.
formation, the LL Hamiltonian can be exactly diagonalizedThese higher dimensional systems are obviously Fermi lig-
by the two boson operators: charge boggp) and spin  uids and have no LL-like intrinsic spin-charge separation
bosono, (p). This fact makes the collective excitation spec- while at the same time having distinct CDE and SDE collec-
tra (CDE and SDEin the Luttinger model very simple: both tive modes.
the charggCDE) and the spifSDE) modes are delta func- Unlike the formulas for the single-particle Green'’s func-
tion like poles and there is no SPE mode or equivalentlytion, in which the non-Fermi-liquid-like Luttinger liquid fea-
quasiparticle spectral weight, at all. Using the standardure arises from the nonperturbative power-law behavior to-

|2,14
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gether with the velocity renormalization, the charge- and

spin-density correlation functionfwhich are two-particle ot

Green'’s functionshave no such power-law behavior at all.

The density correlation functions and the the associated L(p.ekw) = = +
charge-/spin-density excitation collective mode spectra are )

essentially identical in the LL and the FL-RPA motf&iex- pE BE
+

cept for the complete absence of any SPE spectral weight in 0]

the charge sector in the LL model. The Luttinger liquid ef-

fects appear only in the mode velocity renormalizatig(q)

and the overall-mode amplitude facto#s,(q) in the + 4N
collective-mode spectra.

The diagrammatic method for the Luttinger liquid theory
tells us more about the transition from the Fermi liquid to the FIG. 5. Di i tation of the Ward identitv for th
Luttinger liquid, because it is physically more transparent - 2 Dlagrammatic representation ot the Ward identity for the

L . R vertex functionl',;. The solid lines represent the single-particle

than the Bosonization technique, which is more of a formal : . . . . i

. . L Green’s function while the wave lines represent the interaction.
mathematical tool. Early seminal work by Dzyaloshinkii and
Larkin?® and recent important work of Schultzhave shown
that this method is equivalent to the Bosonization theory,
even though its theoretical structure follows a Fermi-liquid-
type conventional many-body theory.

In order to evaluate the irreducible polarizability, we use
the Ward identity connecting the Green’s function with the
vertex function in the following formula:

Note that the above result is independent of temperature, due
to the particle number conservation in thentegral. When
the dispersion is linearized as in the LL model,
ImII§7(q,) itself becomes a delta function ai=qu
rather than a square function, leading to the complete sup-
pression and the disappearance of the SPE mode at
=qug. This makes this diagrammatic result consistent with
the Bosonization result, in which there is manifestly no
G (p.v)— G Hp—q,v—w) single-particle eigenstate at all in the final spectrum. Both
rs 2\ s ' . approaches predict the complete absence of an SPE mode in
w+io—rque the LL theory.

I's(p,v,q,0)=

where T s(p,v,q,w) is the vertex function of two-particle
lines and one interaction line. The Ward identity follows di-
rectly from the particle and current conservation in each Motivated by the long-standing SPE-feature puzzle dis-
branch and spirtvalid only for forward scatteringcoupled  cussed in the Introduction, it has been suggeététhat we
with linear dispersion relation. It can be derived by Summingcan interpret the “SPE” peak observed in the experimenta|
the infinite series of vertex diagrams as shown in Fig. 5RRS spectra as the “singlet spin excitatidh.In other
Using this vertex expression, one can calculate the exact ikyords, the incident photon virtually flips the electron spin
reducible polarizabilityconsider the charge part only and then restores its polarization after the scattering, leaving
the electron spin unchanged. Unlike the triplet spin excita-
g g tion, SDE, which manifests itself in the depolarized RRS
. p 4 spectra, the virtual spin-flip process of SSE may, in principle,
Mo (@)= —|% ﬂj 27 Crs(PV)Grs(P=av=w)  uibite to the final spinless scattering matrix element of
the polarized Raman scattering spectrum, so one could ex-

IV. HUBBARD MODEL

XI's(p,v.q,@) pect that SSE should be very close to the SPE in energy
dp Neo(P—a)—Ne(p) under the spin-independent Coulomb interaction. That ex-

=> f RS rs plains why one cannot simply separate these (#8E and
s J 27  wo+id—rque SPB whether in the experimental measurement or in the
5 theoretical calculation. In the LL theory, there is no SPE, but
29°ve/m ) SSE is, in principle, allowed and may simulate the SPE of

the FL-RPA theory. To investigate the role of SSE in more
details we could use the 1D Hubbard model on a lattice,
Comparing the Fermi-liquid RPA results with the LL results which can be mapped to the exactly solvable Luttinger liquid
we find that they are identical if we only change the FL-RPAmodel in the long-wavelength limit. Thus the 1D Hubbard
parabolic dispersion to the linear one as in the Luttingemodel has no generic SPE properties, and could therefore be
model. Therefore we obtain the striking result that the irre-useful in the understanding of SSE properties. We therefore
ducible polarizability of the linear band dispersion model isstudy the SSE in the 1D Hubbard model, and investigate
exactly the same as the RPA result. In other words, vertewhether its spectral weight can be comparable to the CDE as
corrections to the irreducible polarizability vanish. This re-observed in the experiments.

sult can also be verified by the topological argument given in  In this paper, we want to study the 1D single band Hub-
Ref. 21, which shows that all the electron-hole loops con-bard modelHM) through the Bethe-ansatz equations and the
necting with more than three interaction lines cancel outLanczos-Gagliano method, which is shown to be in excellent

T (w+id)2—(que)
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agreement with the exact diagonalization result. Althoughexample and then estimate their relative weights for com-
HM is a lattice model of short-ranged on-site interaction,parison. Our results obtained by this technique are consistent
unlike the realistic 1D QWR systems which are continuumwith the quantum Monte Carlo calculatidisvhere appro-
systems with long-ranged Coulomb interaction, we couldpriate.

still use it as a valid model in qualitatively discussing the

problem of the polarized Raman scattering because all 1D 1. Bethe-ansatz equations

interacting systems belong to the LL universality class and |t is well known that the 1D Hubbard model can be solved
generic issues may be addressed in any particular 1D mOd%xactlfz'B by the Bethe-ansatz method. The eigenvalue
We first identify the holon excitation of the Hubbard model equation of Eq(9) is proved to be identical to solving the

to be the CDE, and the triplet spinon to be the SDE in theggypled system of equatiorfender periodic boundary con-
usual RRS language, by comparing their dispersion relatlongition)

in the whole spectrum. We then further obtain the finite spec-

tral weights of SSE in the charge-density spectrum and show _ Y sinki—\,+iU/4

that the weight of singlet spin-density excitation is still rather elkit= H — e (10
low in the HM andcannotproduce large spectral weights in a=1 SiNk;—A,—1U/4

the polarized RRS scattering spectrum as found in the ex- N _ ' M '

periment. Thus our HM results shows that the SPE peak in Ao—sinkj+iU/4 o A= ApFiU/2 11
the polarized RRS experiments is unlikely to be explained by =1 )\a—sinkj—iU/4_ B=1Na—Ag—iU/2’ (1

the 1D singlet spin excitation, at least within any nonreso-
nant theory which considers the elementary excitations onlyvhereL(N) is the total number of site@lectrong andM is
in the conduction band. the number of down-spin electronM&N/2). The pseudo-
momentum{k;} and spin rapiditieg\ ,} are generally com-
A. Theory plex variables to be solved and related to the physical states

. . of energyE and momentunp by
The simple 1D single band Hubbard model,
N

E=-2t cosk: , 12
H=—tiz (ciTH’Uci,,,JrH.c.)vLUEi nini, (9 121 i (12

. . . _and
wherec; , andn; , are, respectively, the fermion creation
operator and the density operator for ditend spino, has N
been extensively studied.and U are hopping energy and pZE K; - (13
on-site short range spin-dependent interaction following the j=1
usual notation in the literatufé-2* Note that the Hubbard
model is basically a model with a spin-dependent short-rang
(on-site interactionU. It has generic LL properties in the
long-wavelength limit and for low-lying excitation energy,

If the kj’s and\ ,'s are all real, the identity of the phases in
Eqs.(lO) and(11) can be obtained by taking the logarithm.
Then we have the following well-known results:

i.e., no single-particle behavior in the spectral function at M N —sink.

Fermi wave vector. The explicitly spin-dependent interaction Lkj=2ml;+2 > tan?! ‘1—1) , (14)
U in the HM, however, should make the spin singlet state a=1 u/a

more enhanced in the spectrum, and easier to study. Among

the many accurate and useful methods to study the 1D HM, N _4[ Mo sink; M YRy
we use the Bethe-ansatz metfotf to obtain the ground 221 tan T)ZZW‘]Q+ 2521 tan U2 )

state and the low-lying excitation state dispersion spectra. It . (15)

is well known that the Bethe-ansatz wave functions are not

particularly useful in calculating correlation functions, andwhere the quantum numbefs;} are all distinct from each
therefore we need an alternative method to obtain the spe¢ther and are integers M is even and are half-odd integers
tral weights of the elementary excitations. We calculate théf M is odd, and are only defined jiy|<L. Similarly, the set
charge-density and spin-density correlation functions, to b¢J,} are all distinct and are integers N—M is odd and
compared respectively with the polarized and depolarized inhalf-odd integers ifN—M is even. The value ofJ,} is
elastic light scattering spectra, by using the Lanczosrestricted byJ,|<(N—M+1)/2. Generally, it is not hard to
Gagliano method>~22This methoddescribed and discussed use the Bethe-ansatz equations to solve large size systems. In
below) gives a simple but fast-convergent result for the cor-the thermodynamic limit. — o, one can find the equivalent
relation functions in the lattice model. By comparing the linear integral equations for the densityldé and\’s on the
momentum-energy dispersion relations of these two differenteal axis?>*°3'But we will only focus here on the finite-size
methods,(i.e., the Bethe-ansatz and the Lanczos-Gagliansystems in order to compare the Bethe-ansatz results with the
method we can identify each important spectral peak ob-results of the Lanczos-Gagliano method, which is necessarily
tained by the Lanczos-Gagliano method to be a certaicomputationally restricted to small system sizes.
Bethe-ansatz elementary excitation in the Hubbard model To solve these Bethe-ansatz equations, we first have to
language(holon, triplet spin, or singlet spin excitations, for define the proper quantum numbé¢ts and{J,}, then solve
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Egs. (14) and (15 to getk;’s and \,’s, and then get the shift the total momentum and energy of the spectrum created
momentump and the energ)E of that state specified by by the spin excitation ifJ,}. In the following calculation,
those quantum numbers. Here we present the quantum nume use (g,lg,a1,a5) to denote these states in the spectrum.
ber structures of the ground state and two low-lying excitedThese excitations are calledkR triplet states because its
state, the “4&g” singlet states, the “X:" triplet states, and minimum energy is ak=2kg. In the rest of this paper, we
the “2kg" singlet states as named by SchulfzThe first two  will call them “triplet spinon” for simplicity. (This is related
havek’s and\'’s all real, while the last one has one pair of to the SDE of the earlier sections.
complex\’s in Egs.(10) and(11). 2ke singlet state (singlet spinon excitatiorifhe third
Ground state.lt is easy to see that the ground state ispossible elementary excitations are from the complex solu-
nondegenerate only iN is of the form 4n+2 (m is an tions of Bethe-ansatz equations, E¢)) and(11). Spin sin-
integey. In the following, we just study the nondegenerateglet states 1 =N/2 and thenS=0) are obtained by having
case for simplicity. Considering the essential symmetriespne pair of the complex conjugat®,. =Ag=*=\, with all
one can write the ground-state quantum number satisfyingtherk’s and\’s real. The new set of Bethe-ansatz equations

the above restrictions to be are obtained to be
{hy={—(N=1)/2,... (N—-1)/2}, M N, sink,
ij=27T|j+2 z tan ! Ul
{3 )={=(N2—1)/2, ... (N[2—1)/2}. (16) atay,az
4k singlet state (holon excitation}.he first simplest ex- +2tant }‘R_—Smkl) 1()‘R_—Smkj ,
cited states are obtained by removing one of the momentum U/4—N\, U/4+X\,
quantum numbers;-(N—1)/2+ig, in {l;} and adding a (19)
“new” one at (N—1)/2+1, outside the ground-state se-
guence. All other momentum quantum numbers and spin N A —sink: M N o—\
guantum numbers are kept the same as in the ground-stamez tan ! aTlll) =27J,+2 E tan™! aU—IZB)
structure. Therefore the new sequencdlgf is =1 B#ay,az
(3={-(N=1)/2,... —~(N=1)/2+ig—1,— (N—1)/2+i, +oltant Na‘AR)
U/2—\
+1,. . (N=1)/2(N=1)/2+14}, (17) '
and the{J,} is the same as the ground state in ELp). +tan ! U72+ )\R) , (20
|

Therefore there are two free parametégsand |, for this
type of excitations. In this paper, we usg (o) to denote  wherej=1,2,...N and @=1,2,... M, but a#a;, a,.
this excitation state. According to Schulfzthey are named The two equations for the complex. are

4kg singlet states due to their energy minimunkat4kg in

their dispersion spectrum. In the literature, these states are 1 N (Ng—Sink;)2+ (U/4+\,)?
also called “particle-hole excitation” or “holon” > E In - 5 5
excitation? In the rest of this paper, we will call them “ho- =1\ (Ag—sink))“+(U/4—N)
lon” excitations for simplicity.(This is related to the CDE of M 9 5
our earlier sections. :1 In (Ar—Ap)"+ (U2 M)
2k triplet state (triplet spinon excitationNext we con- 2 p#ay,ap ()\R—)\ﬂ)2+(U/2—)\,)2
sider the excitations of th&'s with all A’s andk’s real. This
is possible only ifM <N/2. The simplest excitations of this (4)” +u 21)
type are obtained by consideridg=N/2— 1. The total spin 4\ —U|)’
of the system isSS=1, so we expect this excitation to be
related to a triplet spin excitation. The quantum numbers of N . Ag—sink; ) \g—Sink;
S ARTSINKG e ARTSINKG
these states are le tan Uldi, tan ( Uld—x, )
d={=N/2+1,... —N/2+iyg—1,—N/2+i
{i={—-N2+1, —N/2+i5—1,—N/2+i, ) M [ r—hg ey
1, NN+ 1), B I L v - v AU v = |
J1=—N/4+38, 1, (22)
where
Jo=da-11 14600, F O,y (19
if [\[>U/4, and N—M is even
wherea=2,... M and I a;<a,<M+2. Herea; and integer _ )
a, are the free parameters in the spin quantum nunjbgy, J= orif |\ |<U/4, and N—M is odd
andi, andl, are the two parameters in momentum quantum half odd integer otherwise.
number{l;}. From Eqgs(12)—(15), we can see thap andl (23

035103-7



D. W. WANG AND S. DAS SARMA PHYSICAL REVIEW B65 035103

As for the quantum numbef]l;} and{J,}, in the singlet B. Results and discussion

states, we choose them to be the same as the ground state s, study the 1D Hubbard chain with three different den-
Eq. (16), except for the two free “holes” afl,, andJ,,,  sities, (n)=N/L=1/3 for 6 electrons in 18 sitegn)=1/2
whose related spin quantum numbez?r:s,l,l and A, are re- for 6 electrons in 12 sites, argh)=5/6 for 10 electrons in
placed by the pair of complex conjugate,=Ag*\,. 12 sites.(Note that the usual filling factor of the system is

Equations(19)—(22) are usually too complex to give a non- (n)/2 since our definition of density does not include spin.

trivial solution because the usual numerical iteration method € Size of the Hubbard chain is dictated here entirely by
will converge to the trivial ;=0 solution. But one can sim- computer memory restrictions in calculating the correlation

plify these equations by taking = U/4 and onek; satisfying function via the Lanczos-Gagliano method. We keep the

sinky—\s, 50 that Eq.(2) could be neglected, and all the PN TR 8 BT 0 DA EOR e ete un
terms containing taﬁl[()\R—sinkj)/(UM—)\,)] in Eq. (22 9 9

. 4 der the periodic boundary condition. Throughout our calcu-
contribute a phase: . The phase numbetis set to make P y 9

o ) ) lations, we set the broadening factor to be ©.0dheret is
the total phase shift(including those from tan{(A\g  the nearest-neighbor hopping amplitude in E%)] and use

—sink)/(U/4—X)]) to be zero in the calculation.  the modified Lanczos method to calculate the ground-state
The spin singlet excitations have a dispersion similar tenergy iterationally until convergence to within less than
the triplet ones. Here we could use( «,) as the quantum .1% in the ground-state energy is reached. We also truncate

number to define these states. In the finite-size system witthe infinite continuous fraction at 25—27th order terms,
repulsive interactiord the singlet states have higher energy which gives us good convergent results in the calculation.
than the triplet ones, but they will become degenerate in In the following, we will first discuss the results related to
energy as we go to the thermodynamic limit—-¢oo, and  the polarized spectrum, which involves no net spin-flip in the
(n)=const). In the experiment, the spin triplet excitationssystem, by using the two methods mentioned above at a fixed
(i.e., SDH are observed in the depolarized RRS spectranteraction strengthlJ/t=3. Then we consider the depolar-
where a net spin flip occurs, while the singlet states are obized spectrum under the same conditions. Finally we discuss
served in the polarized spectra, which involve no net spirtheir interactionU dependence by varying/t in our calcu-
flip. lations. In the discussion below the terms “resonance” or
As mentioned in the beginning of this section, the Bethe-‘resonance peaks” refer to the Lanczos-Gagliano calcula-
ansatz method does not, in general, provide the spectréibns.
weights for their solutions. Therefore the three elementary
excitations above may not be equally important from the
experimental point of view, i.e., they may carry very differ- ) ) ) )
ent spectral weighténd some may even be unobservable in e compare the dispersion of the charge-density excita-
the experimental specitaAll we know from the Bethe- tion with the dispersions of thekd singlet statesholon) and
ansatz solutions are the existence and the dispersion of thetite Xg singlet stategsinglet spinon given by the solutions
excitations bunot their spectral weights. We also know that Of the Bethe-ansatz equations, because these two are the low-
these are allowed solutions of the HM just as the SPE is alying elementary spinlessS=0) excitations of the 1D Hub-
allowed solution of the FL-RPA modelbut not the LL bard model and as such should correspond to the polarized
modeb_ Comparing the mode Spectra| We|ght5 calculated b)ﬁpectrum. We will also Study their relative SpeCtraI Welghts
Lanczos-Gagliano method we discuss next, we calculate thBoth lower density (n)=1/3) and higher density (()
relative spectral weights of these solutions and then study 5/6) results are shown togethigs. 6—9 for further dis-

their interaction dependence. cussion.
In Fig. 6(a), we show the spectral dispersion obtained by

the poles of the imaginary part of the charge density corre-
lation function. The doping density in)=1/3 for 6 elec-

In this paper Lanczos-Gagliano method means the combirons in 18 sites in the 1D Hubbard chain with periodic
nation of two important techniques in the lattice model. Theboundary conditions. The center of each open diamond rep-
standard Lanczos method is to constructanlL matrix rep-  resents the position of the pole, and its area is proportional to
resentation for the tridiagonal Hamiltonian, like €f), and  the spectral weight of that excitation. In the same figure, the
then directly diagonalize it to get the eigenvalugs and  dispersions of the holorista) and singlet spinon(open
eigenfunctionsb,,, which could be used to do further calcu- squarg excitations given by the solutions of Bethe-ansatz
lations, such as obtaining spectral weights. But since onlgquations are also shown for comparison. Several features
ground state energy and wave function are needed in calcwould be noted from Fig. 6(i) the excitation peaks of the
lating the correlation function by using Gagliano’s methodcharge-density correlation function have a linear dispersion
(see below, we use a simpler but more efficient way, the in the long-wavelength limit §<kr= 7/6) and its slope
modified Lanczos method, to calculate the ground-state ergives the velocity of charge density excitation of 1D Hub-
ergy and wave function. This method has been analyzed arfshrd model(ii) The resonance peaks form a wing up to the
discussed in detail in Refs. 25—28 and we refer the reader targe momentum regiofi.e., low-energy excitations corre-
the existing literatur€>>~%8 for details on the Lanczos- spond to the low momentum and high ones to high momen-
Gagliano method. tum), with a maximum energw =4t atq= . (iii) The sizes

1. Polarized spectrum analysis

2. Lanczos-Gagliano method

035103-8



ELEMENTARY ELECTRONIC EXCITATIONS IN ONE. .. PHYSICAL REVIEW B 65 035103

(9) _ (0)

E PR kp/7=5/12 °]
E ;CF'/ﬂ /6. . | © Im<nns> . o ° N
E m<nn> ® E * Holon °
. [ *Holon. g i’ % « | 03Singlet.spinon .
~ O Singlet spinon & 8 X 4 : . o B
3 _E @ 3 LI 3 - S G
. 3E ® ¥ x ¥ - F ®
P ® * > o @ .
Sk % & ’ S @ @
qj) 2E : % % * % * 4 =] F . : * ] . A
3 2f . X = : B B
I & 5 % e of M : T
L g . & . * « : : L | . = E' a
! _ ' g ® : * % E ® o] ®
E ® B @ L
O E 1 1 1 1 1 3 O 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Momentum, k/ Momentum, k/7
(b) (b)
30 T T T ] 4: T T
] g L;72,N/= 10 \(8 ) | soliton
(5,1) N ] tk/n=1/2 holon 3
[ holon (6,2) E ke /TV=5/72 1
A \l/ holon ] 3 E 24 E
2F ] g U=3.0 ]
3t L=18,N=6 Ol (9.2) —
= /C/TY:2/9 > 2k holon E
_'E L (23 kp/n1/6 % é (3.5)
1 _ sil’@glet U=3.0 _ zgﬂ%ﬁ 1
spinon ] = E
0 t Jk' L ] 0 E l L L . JI J A1
0.0 0.5 1.0 1.5 2.0 0 2 4 6
Frequency, w/t Frequency, w/t
FIG. 6. (@) Energy-momentum dispersion relation afi the FIG. 7. Same as Fig. 6, but for 10 electrons in 12 sites. One can

spectrum of charge-density correlation function for 6 electrons in 18&ee that the double occupancy of electrons will give higher-energy
sites. The area of each diamofsdjuar¢in (a) is proportional to the  excitations in this high-density system. Even the singlet spinon ex-
spectral weight of each chargsepin excitation peak. The numbers citations span in a larger area in the whole momentum ranga,in

above the holon and singlet spinon peaksbhare the quantum  their spectral weights are still smaller than the holons and solitons
numbers defined in Sec. IVA1 from the Bethe-ansatz equations. (double occupancy excitations

of the diamonds, which represent their spectral weightsgiven by the charge-density correlation function arise from a
show that the peaks at higher energy generally have greateombination of holon and singlet spinon excitations in the
spectral weights than the ones at lower energies at the sam® Hubbard model. This result could not be trivially ob-
momentum(i.e., spectral weights are greater for peaks atained either by solving Bethe-ansatz equations or by calcu-
higher energigs Therefore one could see by eye a sinelikelating the charge-density correlation function alone, as men-
curve at the upper edge of the resonance wing with a maxitioned in the introduction—one must combine the two
mum atw=4t, and this observation is consistent with the techniques to come to this conclusion. Other spin singlet
results from quantum Monte Carlo simulations on largerexcitations given by the solutions of Bethe-ansatz equations
systerT12.9 (iv) There are no excitation states for singlet[for example, two pairs of complex’s in Egs. (10) and
spinons at smalfj= 7/9. This implies that the singlet spinon (11)], carry very small spectral weights because no other
of the 1D Hubbard model is not allowed for momentum significant resonance peaks are found in this dispersion spec-
smaller than X 2=/L, where 27/L is the momentum scale tra, except for some trivial ones. In the thermodynamic limit,
of this finite-size(L) system. This follows from the fact that we expect that only the kk holon and X singlet spinon

the singlet state must be excited by a pair of complex conwill have finite spectral weights and could be interpreted as
jugate A in Egs. (10) and (11), which is at least a two- the “charge-density excitation” and “single-particle excita-
particle excitation, so that the minimum momentum requiredion” in the RRS spectra respectively when comparing with
is 2x2m/L. (v) One interesting feature is that there arethe experimenfsas we mentioned in the earlier sections. We
clearly two energy minima at=2kg= /3 and q=4kg discuss this issue further later in this paper.

=2m/3 in the spectrum. Comparing these resonance peaks In Fig. 6b), we show the imaginary part of the charge-
with the solutions given by Bethe-ansatz equations, we findlensity correlation function of the same systentat2 /9.

that the holon excitations cover almost exactly the same reit shows that singlet spinons have a relatively small, but
gion including the energy minimum atkd except for the non-negligible weight, compared with the weight of the
lower-lying peaks aroundkt , where the singlet spinon just dominant holon excitations. Their relative spectral weight
matches those peaks. In other words, we could reasonabtgtio (singlet spinon/holonis less than 0.1. Similar results
claim that the most dominant features of the resonance peakse also obtained in the systems of 6 electrons in 12 sites,
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(a) excitations: there are some additional states, having an en-
ergy gap equal taJ(=3t) and a maximum energy greater
than 4 at q= in this high-density situation. These states
(solitong must arise from the double occupancy of the elec-
trons in the Hubbard model, which consequently explains
their high-energy status. The quantum Monte Carlo method,
to the best of our knowledge, does not provide any informa-
tion about these high-energy double occupancy states at the
same densityn=>5/6 in the literaturé® From the Bethe-
Fo ] ansatz equations point of view, however, these states should
<><> ® be obtained by taking the complex momentkinsolutions in
' ' ' ' Egs.(10) and(11),%° whether in the high- or the low-density
0 0.2 0.4 0.6 0.8 1.0 . . .
Momenturn k/m system. Once again, we see the importance of studying the
(0) spectral weights of the Bethe-ansatz solutions by comparing
8 . . them to the correlation function results so that one could tell
I (3,0,1,4) L=18,N=6 ] the most realistic and physically meaningful states. Just hav-
U=3.0 1 ing the solutions, without much idea about their spectral
k/7=3/9 ] weights, is not useful in determining the experimental and/or
[ kp/m=1/6 ] physical relevance of the particular excitations. Therefore, as
4r (3.1.2.4) 1 shown in Fig. '(b)_, the three most important_ contribu_tions to
o the charge-density correlator arise from singlet spinon, ho-
lon, and soliton excitationgdouble occupancy excitations
from lower energy to higher energy regime, respectively, in
[ ] the 1D Hubbard chain. Their relative spectral weights show
0 s that the singlet spinon has the smallest weight, and it could
0.0 00 venc /1t'° 1.5 be shown that there are gapless holon and singlet spinon
auener excitations in the half filling (n)=1) 1D Hubbard model
FIG. 8. () Energy-momentum dispersion relation afiil the ~ systems, where the solitofdouble occupancy excitations
spectrum of the spin-correlation function for 6 electrons in 18 sitesand other higher energy states dominate the excitation spec-
trum.
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(ny=1/2, which are not shown in this paper.

In Fig. 7(a), we show the dispersion of the resonant poles
of the charge-density correlation function of 10 electrons in  In Fig. 8a), we show the resonance dispersion spectrum
12 sites (n)=>5/6). Here the holon excitations form a more of the spin-density correlation functiokgo), of the low-
narrow wing than in the lower density system, but the basiadensity systen{6 electrons in 18 sites The triplet spinon
shape of the dominant curve is almost the same. Below thiexcitation spectrum given by the solutions of Bethe-ansatz
curve, the singlet spinon occupies almost the whole resoequations is also presented for comparison. Several features
nance region. Sincek¢=>57/3 in this high-density system, are found:(i) in the long-wavelength limit, the resonant
we cannot see thek¢ energy minimum in this figuréactu-  poles have a linear dispersion, whose slope gives the velocity
ally, the gap of this energy minimum is very large in this of the spin-density excitation. One could easily see that this
finite system, but will go to zero in the thermodynamic velocity is always smaller than the velocity of the charge-
limit'#). But one could still see the energy minimum of the density excitations at the same density. This is consistent
singlet spinon at R-=57/6~0.833r in Fig. 7(a). Thereisa  with result of previous work? (ii) The resonance poles form
notable feature in these results at energies above the holenwing up to the large momentum regiog~ ), whose

maximum excitation energy is belowt 4(iii) Unlike the re-
T - ' ' - sults for the charge-density correlation function in Fi¢a)8
£ kg/m=5/12 . . : o the most dominant poles are located in the lower energy part
f o Im<oo> o of the resonance wing, which correspond to the triplet state
Fx Singlet ‘'spinen  © % without any excitations ifl;}, and therefore is related to the
b : : o lowest energy ones in our calculatiofiv) The resonance
. % & & spectrum has an energy minimum &2 Compared to the
& &® & triplet solutions of Bethe-ansatz equations, the triplet spinon
] excitation spectrum has only three peaks matching the reso-
@ & & nance poles of the largest spectral weight at their momentum
values = w/9, 27/9, and 37/9), and the other three match
the poles of relatively muctveakerstateq not visible in Fig.
8(a), but distinguishable in the absorption spectrum shown in
Fig. 8b)]. This result demonstrates that the spectral weights
FIG. 9. Same as Fig.(8), but for 10 electrons in 12 sites. of elementary excitations could be very different even if they

2. Depolarized spectrum analysis
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result from the same type of the Bethe-ansatz solution. Fig- (a)

ure 9 shows the dispersion relation of the spin-density cor- 12T T TS faN=g " ]
relator of the large density systertn}=5/6) and the corre- k/n=2/9

sponding triplet spinon excitations by the Bethe-ansatz Ue10.0 ¥/ M=1/8

solutions are also shown. 10

3. Interaction dependence U=8.0

In this section, focusing on the lower density system ( U=7.0
=18 andN=6) and a fixed momentumkE& 27/9), we
study the mode dispersion and spectral weight of these exci-
tations in a range of finite interactiot(t<10) to obtain the
interaction dependence of the excitation spectra. First, we
study the polarized spectrum given by the imaginary part of U=4.0 A A ]
the charge-density correlation functigimp) [shown in Fig. ]
10(a)]. Then we compare the energy of the resonance peaks u=3.0 J\_L
in the series of spectra with the Bethe-ansatz reqiig. U=20 A A 1
10(b)], and discuss the interaction dependence of the mode 2
velocity [Fig. 10c)]. Finally we discuss the interaction de- u=1.0 ]
pendence of the spectral weight for each elementary excita- ]
tion [Fig. 11]. ol 2729, L ¢ e

In Fig. 10(a), there are basically three peaks in the typical 0.0 0.5 1.0 1.5
structure of the polarized spectrum, and we can identify them Frequency, w/t
as the singlet spinon, the second and the first holon excitation (b)

(from lower to higher energyby explicitly comparing with
the energy given by the Bethe-ansatz solution in Fig).6
Using the notation introduced in Sec. IVA1, the singlet
spinon is the stat€2,3), while the holon | and Il states are Holon (1)
(6,2 and(5,1), respectively. Several interesting features can s NN
be found in Fig. 10a): (i) in the noninteractingl{ =0) case, )
there are only two equal weight poles, which could be un-
derstood as the two single partidielectron and holeexci-
tations around Fermi surfack=ke. (ii) When finite inter-
action is turned on, there is an additional excitation.
According to the comparison of dispersion relations, both the I
new peak and the higher energy peak should be interpreted 0.0 . . . .
as holon excitationgcalled holon Il and holon |, respec- 0 2 4 6 8 10
tively, corresponding to differenfl;}’s). (iii) The singlet (c) U/t

spinon excitatioishown in Fig. 10a)| has a rapidly decreas- 1.6[ . . . .
ing spectral weight with increasing interaction, and disap- i
pears totally a&J/t>5.0.(iv) The two holon excitations shift

to higher energy adJ) increases, and maintain almost the
same spectral weight except one more peak appedddtas
=8.0 [see Fig. 1(a)]. Above U/t=8.0, the appearance of
the new small peak affects both the spectral weight and ex-
citation energy of the holon Il excitatiorisee Figs. 1(b)

and 11a)]. There are basically two possible interpretations
for this result. One is that this peak does not represent real
excitations, but may be arising spuriously from the inaccu-
racy of the finite truncated series or finite iteration used in
the Lanczos-Gagliano method in the laldeange. Another
possible reason is that it may arise from the higher energy U/t

excitation states of unknown origin, which are also obtain-

able from the Bethe-ansatz solutions, but whose strength is FIG. 10. (a) The calculated polarized spectra with various inter-
visible only when the interaction strength is large enoughaction strengths fo(n)=6/18=1/3, atk=2=/9, and(b) the exci-
We will not discuss this anomalous peak any further in thistation energies of the three elementary exciations in variglts
paper since this falls outside the scope of our main interesgompared with the Bethe-ansatz res(islid lines. (c) The veloci-

In Fig. 10c), we plot the excitation velocity, which is ties of holon and singlet spinon with respect to the Fermi velocity
defined to be ve as a function oU/t.
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o
~ =
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FIG. 11. The spectral weights of the three excitations in the
polarized spectrum as a function of the interaction stremthin
(a) linear scale fronJ/t=0 to U/t=10, and(b) linear-log scale for
smallU (U/t=<1.0). The momenturk=2/9 is the same as in Fig.
6. The inset ofb) is the log-log plot for the holon Il excitation. We
can see that the holon Il excitation increases as a power law in its

strength adJ increases, showing a possible Luttinger liquid behav- 0ol ‘ s s s
ior in the weakly interacting systefisee texxt 0 2 4 6 8 10
U/t
AE(q)
V= Tq ) (24 FIG. 12. (a) The calculated depolarized spectra with various
q—0* interaction strengths of the low-density systgm)=6/18=1/3, at

as a function of interaction strength. We find that when themomentumk=2/9, and (b) the excitation energies of the two
interaction is weak /t<1), the two (holon and singlet _elemen_tary excitationériplet spinon | gnd Il with respect to the
spinon excitations are almost degenerate, while their re|a_|nte'rac_'[|on strengthJ/t, compared with the Bethe-ansatz result
tive spectral weights change a [aee Fig. 1(a)] as a func-  (Solid lines.
tion of U/t. WhenU/t increases, the holon has greater exci-
tation energy and hence velocity, but the velocity of theever, the spectral weight of holon Il has a stronger power-law
singlet spinon decreases fast. This result holds even in theehavior, S,o0n <UL Thus the two holon excitations
thermodynamic limit. differ a great deal in their interaction dependence of their
In Fig. 10b), we see more clearly that the energies of therespective spectral weights.
three elementary excitations are only weakly dependent on In Fig. 12a) we show the calculated depolarized spectra
the interaction for smalU, but strongly dependent du for by taking the imaginary part of spin density correlation func-
large U. In Fig. 11(b), we have a logarithmic scale in the tion, (o) for various interaction strengths. In the noninter-
spectral weight dependence with respect to the interaction iacting case, the spectrum is the same as the polarized one in
small U/t range U/t<1.0). By calculating the slope of Fig. 6@ due to spin rotational symmetry. But with increas-
these data, we find that the spectral weight of holon ljing interaction strength both triplet spinon peaks move to
Sholon 1, 1S @lmost a constant in the smaller interaction rangdower energy in contrast to the polarized spectra. Compared
(U<0.%), and then weakly decreases for highér How-  with the Bethe-ansatz results in Fig.(b2 the lower/higher
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8[ ' T Triplet Spinon (1) ] This result connects the theoretical calculation of the 1D
—g— Triplet Spinon (Il) | Hubbard model with observable physical quantities — in
1 particular, these are the only two modes which are likely to
show up in the polarized Raman-scattering experiment prob-
ing the charge-density excitation spectra. Another implica-
tion of this result is that one can interpret the Bethe-ansatz
quantum numbers|l;} and{J,}, as the ones of collective
excitations. But our spectral weight analysis shows that most
of the Bethe ansatz solutions for the 1D Hubbard chain do
not have any observable contributions to the real physical
quantities because they carry essentially no spectral weights.
ol ) . . s ] (ii) The excitation holon Il has a power-law behavior in its
0 2 4 6 8 10 spectral weight with respect to the interaction strength in the
U/t small U/t region, while the holon | has almost interaction-
) ] ) o independent spectral weiglihere the holon I/l could be
FIG. 13. The spectral weights of the triplet spinon excitations asgeneralized to represent thé4singlet excitations having
a function of ipteractiorU/t in linear scale fromJ/t=0 tq U/.t holes in the edge/middle of the charge quantum number
=10. We consider the same system and momentum as in Fig. 12{I i1). An interesting problem for further research is to obtain
energy peak, triplet spinon I, is the state denoted bye_m analytic f_ormula for the exponent of th_e holon I gxcita-

! o . i tion. This will relate to the small interaction expansion of
(6'0’1’3/.(6’1'2’3' The excitation energy of the triplet SPINON g ihe-ansatz equations and wave functions, which have not
m‘z %b;?gg_%;g‘le‘igﬁf isncgzalclaﬂ?g:(sg;)?dtr?a%r?ﬁes (\;vr?élrg\;\gth ]et been explqred much in the literature. When the interac-

jon strength increases, on the other hand, the spectral

Fhe tripl_et spinon Il does not seem to agree well _vvhe_n th?/\/eights of these two holons become equal as shown in Fig.
th(ear)actlgncéﬁ Isirget[]at??ﬁ/?as'bzrzmetgeﬂis:“ lanarzlr?(.:e 1|P(a). (iii ) As for the singlet spinons, we find that their spec-
W ! Y u pp al weights decrease to zero very féskponentially asU

3\/%?;2?; r?t))(ﬂtea“rc()egea(ta:;irllnoljrr]%e&ﬁg?;:sségasgohliggn:pgggg creases. This could be understood from the fact that the
P : -site repulsive interactiob prevents the formation of the

oo ey b S conbrons v gapSATmeIc leton orotal Wave Untors, Whch must ac
. y . . . P company the antisymmetric spin singlet wave function, thus
larized spectra. In Fig. 13, we show the interaction depen-

. . M~ suppressing the singlet spectral weight for latheiv) From
dence of the spectral weights of the two triplet spinon : . L ; . -
excitations. The triplet spinon(ll) has a maximurmini- the imaginary part of the spin-density correlation functions

mum) speciral weight at some finite interactidi/t—3~4, we find that the triplet spinon is the only low-energy spin

. . S xcitation in the long-wavelength limit. There i her
and the interaction dependence of the spectral weight is noe— citatio the long-wavelengt t ere o othe

o . . ; xcitation of important spectral weights in this regidm)
trivial. This result demonstrates the importance of the inter- : :
mediate interaction strength of the 1D Hubbard model. The spectral weight study shows that among many triplet

spinon excitation states, only those with some some special
_ _ quantum numbers could possibly have relatively greater
C. Discussion weights at a given momentufisee Fig. 8) and the text
We systematically study the elementary excitations of 1D'elated to that for finite interaction strengtiU/t. Others
Hubbard model by combining the techniques of the exachave very small or trivial weights, which are not physically
Bethe-ansatz equations for the mode dispersion and th@gnificant. (vi) Finally the interaction dependence of the
Lanczos-Gagliano method based spectral weight calculatiopPectral weights of the triplet spinon | and II differs very
of the correlation functions. Three types of elementary excifnuch in the intermediate interaction range, but becomes
tations, holon, singlet spinon, and triplet spinon excitationssimilar in magnitude in both the weakly interacting and the
are studied at zero temperature and different densities ( Strongly interacting situations. This shows the subtle compli-
:5/6, 1/2 and 1/Band different interaction Strengm_ We cations In Interpretlng VarIOU§ eXC.|ta.t|0n I:nodes in the 1D
first compare the energy-momentum dispersion relations gfiubbard model for intermediate interaction strengsiay
these excitations obtained by both methods and then study/t~3). Further research is needed to provide a more com-
the mode spectral weights in different situations. The complete understanding of this intermediate interaction
parison between Bethe-ansatz solutions and resonance pedR§ion, and our results should be considered a preliminary
of the Lanczos-Gagliano correlation function gives us soménvestigation.
important results(i) the holon and the singlet spinon excita-
tion states show up together in the charge-density correlation
spectra. Holon states have higher energy with an energy
minimum atk=4kg while the singlet spinons lie in the lower In summary, we systematically calculate the charge-
energy region with an energy minimumilat 2k . There are  density (polarized spectiaand the spin-density correlation
no other states of prominent spectral weights except thédepolarized spectydunctions of one-dimensional systems
gapped double occupandgoliton) states near half filling. in three different models: Fermi liquid model, Luttinger lig-

Spectral wWeight (arb. units)

V. CONCLUSION
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uid model, and Hubbard model. In the polarized spectra, wenan scattering mechanism, no matter how one interprets the
find that the FL model shows a strong collective charge{ower energy excitations to be SPE or SSE. Recent theoreti-
density excitation at plasmon energy and a relatively wealcal work’~® on resonantRaman scattering spectroscopy in-
single-particle excitation ab=qug, while the LL model dicates that the low-energy SPE feature may be a purely
shows one bosoniglasmon/CDE excitation only. Compar- band-structure effect arising from the participation of the va-
ing the plasmon excitation energy of FL model and thelence band in the resonant scattering process. This also ex-
bosonic excitation of LL model we find these two excitationsplains why this anomalous peak shows up in all dimensions
are identical, and the small SPE peak in FL model arisesn experiments and not just in 1D. In the depolarized spectra,
from the finite curvature effect of electron energy dispersiorhowever, only one spin excitatiqthe SDE or the spin triplet

at the Fermi point. In the Hubbard model, however, two ex-excitation is observed in these three models. The vertex cor-
citations, holons and singlet spinons, show up together in theection of the FL model will in general reduce the SDE en-
polarized spectra. We show that the holon excitations arergy compared with the SPE energy, and separate the SDE
actually the CDE in FL model or the bosonic excitation in from the SPE. In the intermediate interaction region, the two
LL model, while the singlet spinons in the HM arise from the triplet spinons in the Hubbard model have very different
spin degree of freedom and finite dispersion curvature aspectral weight behavior, showing very interesting interac-
Fermi point. If we compare the spectral weights of the lowertion effects which need to be studied in more details in the
energy excitation$SPE of FL model/no peak in LL model/ future.

singlet spinons in Hubbard modednd the weights of the

higher energy excitation€CDE in FL model/boson peak in
LL model/holons in Hubbard modelwe find that the higher
energy excitations always haveuch larger spectral weight
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