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Coulomb Luttinger liquid
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Accurate expressions, valid in experimentally relevant regimes, are presented for the effect of a long-ranged
Coulomb interaction on the low-energy propertigBomentum distribution function, density of states, electron
spectral function, and i correlation function of one-dimensional electron systems. The importance of
plasmon dispersiofas opposed to expongreffects in the spectral function is demonstrated.
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The low-energy behavior of one-dimensioriaD) elec- 1
tron systems is known not to be consistent with Fermi liquid H = vp(p—rpe)C! Cr pt C > V(@ pr(@)p(—q)
theory! However, the theoretically well-establisifezhd ex- P 4
tensively studiedi Luttinger liquid (LL) model of one- +p(Q)p_(—a)], ()]
dimensional physidsis, strictly speaking, not applicable to . ) )
electronically conducting one-dimensional systems such a¥herec, , is the electron creation operator apdq) is the
quantum wires (QWR's),® carbon nanotubés, organic density operator describing dengty fluctuations at momen-
conductorg,and doped chain or ladder compoufideecause UM @ and branchr =1 for the right(left) movers. For 1D
the electrons in these compounds interact via the CoulomfYStemsVe(q)—In(1/q) as q—0 and becomes d/for q
force, which is long ranged, whereas the standard Luttinge@rge.r tha_n some scalg, set by the_geometry and _the wave
model assumes a short-ranged interaction. The long range nction size. A reasonable approximate form, which we will
the Coulomb interaction leads to a scale dependence of thee N our subsequent analysis, is
Luttinger exponents and velocitiésyhich have been studied v

- e mUEVo, |dot(
by several authofs® on the assumption that it is well ap- Ve(q) =
proximated by its leading (If?) divergence. As we show, 2 q
this approximation is not accurate in any physically relevaniyhere v, is a dimensionless measure of the interaction
regime. One exception is a very interesting recent renormaktrength and), * is the length scale paramet¥f, andq are
ization group treatmettwhich found an effective exponent system-dependent factors. For a cylindrical quantum wire of
very similar to ours but did not discuss the implications foradiusa, Vy=4e? e qvr andqy~ 2.5/, whereeis the elec-
physical quantities. Some numerical results have alsgon charge and:, is the background dielectric constant,
appeared,2 but a general understanding of the experimentalbout 10 for GaAs. These values give the correct long-
implications of the Coulomb interaction is lacking. wavelength limit and are within 10% of the correct|ldo-

In the present paper we use direct analytical and numeriefficient at large momentum. In carbon nanotulbgsis of
cal evaluation of the relevant bosonization expressions tthe same form as in QWR’s but,~1.4° and qy~2.97R,
determine the momentum distribution function, tunnelingwhereR is the radius of the tube. For organics or doped spin
density of states, and spectral function for 1D electron sysehains, additional short-ranged exchange interactions may be
tems interacting via the physically relevant Coulomb inter-important. The usual argumefishow that these interactions
action at zero temperature. We define an important but prdead, at low energies, to an additive constant teriv i(q).
viously overlooked energy scale, present an accurate Equation(1) may be bosonized as ustidl the charge
expression for the scale-dependent exponent, show how tf@xcitations are plasmons with dispersieg=qv, and ve-
scale-dependent velocity affects the spectral function, antpcity vq=veV1+2V(q)/mve is
qualitatively discuss theld correlation function. Our results
should apply directly to 1D QWR'¢Ref. 5 and nanotube$.

We consider a 1D electron system with a noninteracting
dispersione, which we linearize near the Fermi point, de-
fining a bare velocityvg. We here assume that the only
important interaction is the Coulomb interaction in the for- Coulomb interaction.The electron Green functioG,(x,t)
ward scattering channel and neglect umklapp scattering ar (#; (xt) ¢ (00)) is
other interactions. This is a good approximation for QWR _
and nanotube systemfFor organic and doped spin chain "™ i ex — D (x,1)]

: @

()

vg=ve\/ 1+VqIn

dot q}

(Note that we have lim wy~qug+Vo0o/2# qug for the
g

materials a modification, discussed below B}, is needed. G,(x,t)=l||;no 2w  X—Trugt+ie @
The Hamiltonian is(here we do not write the spin index
explicitly) where the phase functio®,(x,t) is
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S 0.50F
D, (x,1)= E %e— ep(eip(x—rv,:t) _ eip(x—rvpt)) e '
2Jo p 0.40¢ 3
+2 sinff(g,)[1—cogpx)e "PUet].  (5) - ;
£ 0.30 ¥ 3
The exponent parametéy, is defined by o 1
~ 0.20F 3
+ 1
e 2= 1+Voln( do q) ~ \/V—Olnl’z(%), (6) 010 ;
q q £ 0.00 0.05 0.10 0.15 0.20 ;
o 0.00E s . . . E
whereqs= qoe”"0 and the last approximation is good at long 0.0 0.2 0.4 0.6 0.8 1.0
wavelengthsg<qo. {(p—ke)/ke
We now use Eqs(4)—(6) to study electronic quantities.
We begin with the momentum distribution function FIG. 1. Calculated momentum distribution functiap) with

respect to momenturp—Kkg for a realistic QWR system ai=70
i [ —ispx nm. Solid, dashed, and dotted lines are results for three different
n,(dp)= _J dx —exp —®,(x,0)], 7) interaction_ strength¥/,=1.21, 2_.42, and 4.84, respectively, where
2m) o IX—l€ Vo=1.21 is for electron density 0.6510° cm ! and £,=12.7
(Ref. 5. Inset: the effective exponef@roundkg) obtained by tak-
where Sp=p—rkg. In a noninteracting Fermi gas,(Sp) ing the logarithmic derivative of the numerica(p) for |p—kg|
=6@(—rop). For a short-ranged LL, the generally accepted<0..
result® is that in the vicinity of the Fermi momentum, 0.5
—n,(8p) ~sgn( 5p) X{C4|8p|+ C,| dp|”} with y a LL ex- 1 © -
ponent andC, and C, two constants. The first term is the N(w)= om Z f_xdte' G0N +G(0,-1)],
noncritical background coming from high energies, while the (10)
second(critical) term comes from low energies where LL ] ]
physics is important. For the long-ranged interacting modefor @ measured from the chemical potential.
we now consider, attention to the singularity structure of the We first show thalN(w) vanishes faster than any power

noninteracting electron Green function leads(let sp>0  0f @ as w—0. We observe that g\/c(p)¢0, G vanishes
andr=+1) faster than any power dfast—«.” Therefore the integral

obtained by taking any number af derivatives ofN(w) is
absolutely convergent at long times, and may be evaluated

n(sp)= E_ if d_xsin( spx)exf — ®(x,0)] straightforwardly by contour methods even at0.1* We
2 mlo X further note thatG,(0t) has no singularities in the lower
1 Yq(oP) (uppep half plane forr=+1 (—1); thus by deforming the
=_-+C;6p+C} —) +higher orders, (8)  contours appropriately we find thdfN(w)/dw"|,-o=0 for
2 Qo anyn. This argument does not apply tgp) because of the

. . ) ) . different analytic structure of th& dependence. Thus the
where again the nonsinguléy; term is from the integration noncritical contributions which obscured the behavior of
over smallx, while the singularC; term comes from inte- n(p) do not occur inN(w). By evaluating Eq(10) we ob-
gration over largex and is a weak function of ¥/(1/6p).  tain
The scale dependent exponen( p) is found to be

| Yol®)
11, N(w)ﬁx(;s) : 11y
Yq(Q) ~ S5l3¢ fa+ g?0a—1
where the scale-dependent density of states expopgiat)
_ is
~Eml/Z(q_s) +m_ 1 9)
6 q 2\, 2 0, 1] ©s In"Y(w/w) 1
Figure 1 shows results obtained by numerically evaluating Yol@)~ Tln © 2 W, T2 (12)

Eq. (8) for typical QWR parameters. An enhanced curvature
near the Fermi momentum is evident. The inset of Fig. 1the same form as that of E() with g, replaced by a char-
shows the logarithmic derivative aq(p)=dIn|n(p)  acteristic energy scales. From Egs.(3) and(6) we expect
—1/2//d In(p), which shows that for smalbp the behavior ws=A qwr\V, with the numerical constam determined
may be described in terms of a slowly changing effectiveby subleading corrections to the asymptotic analysis of Eq.
exponent. We note that,(p) is always less than 1, because (5). Here A may in principle have a weak scale and system-
when the scale-dependent exponen(p) of Eq. (9) is  parameter dependence, but our numerical results show that
greater than 1, the background term dominates. for a wide range of energies (18<w/Er<0.1) and inter-

We now turn to the tunneling density of states, actions (X Vy<5) it is very well approximated by the con-
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ther. We therefore propose Ed9) and(12) as widely appli-
cable fitting formulas for the effective exponents in the Cou-
lomb Luttinger liquid.

The scale-dependent exponent also appears in the

EL“ single-particle spectral functiop(q,)=(1/27)[G(q,)
~ ., Vomt.84 +G(—qz—w)]; h_owever, the sqale—dependent velocity in
3 I s 1.0t e ] Eq. (5) is more important. To introduce our results, we
> 0.4p < N % % % x x % x x] | briefly summarize known results for a short-ranged repulsive
d 3 0.5 g\:“_&ig:: interaction in the spinless LL mod&l At fixed g, one defines
0.2} Vo=T1.27 ] three  ranges: (i) p(q,0)=0 for |w|<w, (energy-
E‘ 0.0 momentum conservation (i) power-law singularities as
0.0 , . .0.000020.940.066,080.10 |w|—>w§ , and(iii) an exponential decay at scales larger than
0 2 4 6 8 10 the Luttinger cutoff. For the long-ranged Coulomb interac-
w/E¢ tion, p(q,w)=0 for |w|<wq due to the energy-momentum

. . conservation, but the behavior in both regidinsand(iii ) is
FIG. 2. Calculated density of statdd(w), with respect to en-  strongly modified. Forw|> wg [region (iii)], p(q,w)~exp

ergy » for the same system as Fig. 1. Different line styles represent_|,|/E (w)] with a scale-dependent cutoff
different interaction strengths as indicated. The inset is the effective

exponenty,, obtained by taking the logarithmic derivative N w).
The numerically calculated curves are well fitted by the analytical qQoveVo
expressior(dash-dotted lingsof the exponent from Eq13) at the Edw)= 2

correspondingVy's and ws=200.v¢\Vo. The stars are the first-

order term of Eq(13) only, for Vo=1.21, showing that the widely hacqyse of the slow (4) decay of the Coulomb interaction
used leading logarithm approximation leads to factor of 2 errors. in the large momentum regidiEg. (5)].

Near threshold ¢,<|w|<w;) there are two effects: the
stant valueA=20. Figure 2 shows the results of a numericalscale dependence of the effective Luttinger exponent and the
calculation ofN(w) from Eq. (10) for three different inter- curvature of the plasmon dispersion, which prevents the dif-
action strengths; the inset compares the numerically calcuierent boson modes from adding coherently. Thus as one
lated effective exponent,,(w)=d In[N(w)]/dIn(w), with the  decreases towardsw, (considero>0 part only one ob-
analytical result obtained from Eq€ll) and (12): tains first a divergencéw?«(?*)~1 (heredw=w—w,). This

divergence is cut off by curvature effects at a scal€q)
=Max, - o(wp— Pwy/q)~(14)que\Voln *3(qs/q),  the
difference between the exact dispersion and a linear approxi-

alo|
In

; (14)

UF

()= Elnl’z Os)| In"YH ws/w) 1 13 mation. We find that forq larger thang, ~Agse™ ">Vo [at
Tl @)=y 1) a4V, 2° which vy, (w¢(q,))=1] the curvature effect is more impor-

tant in cutting off the divergence, whereas fgrq, the
effective exponent is more important. A& — 0" the spec-

One sees that the fit is very godithe small differences ap- tral function decreases rapidly, ultimately vanishing faster
pearing atw/E;~0.01 arise from noise in the numerical cal- than any power offw due to the increase of the effective
culation. exponent. Thus the generic behavior is a spectral function

The two crucial energy scales definedMfw) arews and  which increases rapidly as is increased above threshold
, at whicha,(w,)=1, corresponding ta, ~we >0, goes through a maximum atyeq= wq+Aw With Aw
<ws. In the high-energy regiom> wg, one has essentially set by the larger ofs, andw.(q), and then decreases expo-
noninteracting behavior. Fas, <w<wg, one has a LLwith  nentially with a scale-dependent cutoff,(w) for o
a scale-dependent exponent. kot w, , @,>1 andN(w) >wpeak- The suppressed spectral weight in the near-
is concave upwards at small, suggesting a “pseudogap”in threshold region is compensated by the slower decay at high
the electronic density of states. For most real QWR systemsnergies, preserving the sum rylp(q,w)dw=1. In Fig. 3
Vy is about 1-5 depending oey andvg, and thusw, is  we show the results of direct numerical evaluation of the
typically many orders of magnitude smaller th@g. In our  electron spectral function for the Coulomb Luttinger liquid
calculation, using QWR parameters from Ref. 5, we havegsolid lineg and for a short-ranged-interactidéregulay Lut-
ws~100 meV andw, ~10"% meV. For extremely small tinger liquid with exponentr=0.2, approximately equal to
w<w,, Eq. (13) gives a,~(VVo/4)In""(w./w), an ap- the effective exponent of the Coulomb caseast 0.3E¢
proximate form used earlier in the literatt¥& However, as  (dashed lines Note that the partition theory techniques used
seen from the inset of Fig. 2, the leading logarithmic diver-in Ref. 15 to simplify the evaluation for the short-ranged
gence is so weak that in all physically relevant regimes thease do not work in the Coulomb case. The shift of the peak
other two terms in Eq(12) are needed for quantitative accu- away from the threshold is evident.

racy. On the other hand, the constésttale-independenex- Finally, we briefly discuss the “Wigner crystal” correla-
ponent used in Ref. 6 for nanotubes is also not an adequati®n. Schult? observed that at long enough length scales the
approximation for the small energy regiom€0.05%E¢) ei- logarithm arising from the long-ranged Coulomb interaction
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) q=04 &, I s4kF<6p)~(—

op

) 1-8V~ Yan~Y3(q4/ 5p)
, (15

500k _ where Sp=|p—4kg|. Therefore we expect to see thé4

I 1 divergence when/V,In3(qs/8p)>8 or sSp<q.e *"o, or
in terms of temperature &<T,, ,= we **Vo, which is sen-
sitive to the electron density and experimental geometry, but
is in general far too small to be experimentally relevant and
is also much less than the scalg at whichN(w) develops
a pseudogap.

Before concluding we critically discuss the various ap-
proximations made in our theory in the following) We
have used an approximate form of the 1D Coulomb interac-
tion through the simple model defined by Eg). This ap-

(a) q=0.007 k; ! ' ] proximation is qualitatively correct, but the cutoff length
50 i 4 scalqul is system dependent and may not be known in
; general.(ii)) We have neglected umklapp and other possible
(e.g., impurity-induced largeqg corrections in our calcula-
] tion primarily because such corrections do not arise in semi-
eebiesiinn conductor quantum wire systems which are of main interest
-2 -1 0 1 2 to us. If umklapp processes are important, that could change
w/(keve/2) our results. We believe that our theory is the correct leading
order theory for the Coulomb Luttinger liquid and the ne-

FIG. 3. Calculated electron spectral functip(q,w) for differ- glected corrections are small.
ent momentay as indicated in the figure. Solid lines are from the ~ | conclusion, we have presented a systematic theoretical
Coulomb interacting systeliparameters are the same as Fig. 1 with analysis of the low-energy properties of electron systems
Vo=1.21).while dotted I.ines are from the short-ranged imeraCtingsubject to long-ranged Coulomb interactions, including a re-
system with the approximate effective exponent0.2. The WO jiahle estimate of the scale-dependent Luttinger parameter
triangles in(b) and (C.) indicate the thresm'd’.: *wq. The ripple and apparently the first calculation of Coulomb effects on the
of the spectral function curves is the numerical error. ;

spectral function and values for tigenfortunately extremely

) ) . low) scales at which the divergent behavior associated with
causes the K- component of the density-density correlation yho coulomb interaction becomes manifest.

to decay more slowly thar™*%» and also more slowly than

the X component, leaving a state best interpreted as a This work was supportedD.W.W. and S.D.S. by the
Wigner crystal. Using the notation of this paper, we obtain,U.S.-ONR, U.S.-ARO, and DARPA and by NSF-DMR-
for the 4kg term in the structure factor, 00081075A.J.M.).
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