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Abstract. We derive a general, effective many-body theory for bosonic
polar molecules in the strong interaction regime, which cannot be correctly
described by previous theories within the first Born approximation. The effective
Hamiltonian has additional interaction terms, which surprisingly reduce the
anisotropic features of the condensate profile near the shape resonance regime.
In a two-dimensional (2D) system with the dipole moment perpendicular to the
plane, we find that the phonon dispersion scaleg/gd in the low-momentum

(p) limit, showing the same low energy properties as a 2D charged Bose gas with
Coulomb (¥r) interactions.

Contents

Introduction 2
Low-energy scattering theory of dipoles 3
Criterion for the first Born approximation 4
Effective Hamiltonian in 3D space 5
9
9
9

a bk ownE

3D condensate profile
5.1. Gaussian variational wavefunctian. . . . . . . ... ... L oL
5.2. Example: nearshaperesonance. . . . . . . . .. . ... ...

6. The effective Hamiltonian and excitations in 2D 10
7. Summary 12
Acknowledgments 13
Appendix A. The effective Hamiltonian in real space 13
References 15

New Journal of Physics 10 (2008) 053005
1367-2630/08/053005+16%$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


mailto:dwwang@phys.nthu.edu.tw
http://www.njp.org/

2 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1. Introduction

Recent developments in the trapping and cooling of chromium atbjasl polar molecule<]

provide a new direction for investigating quantum states resulting from the anisotropic dipole
interaction. Dipolar effects on the condensate proffleand elementary excitationg][ have

been extensively studied both theoretically and experimentally. Several exotic many-body states
resulting from dipolar interactions are also proposBd However, so far, most theoretical
works are based on the pseudo-potential developed by Yi and 6jowithin the first Born
approximation (FBA). As a result, these results do not become justified when applied to systems
of polar molecules, which can have large electric dipole moments and hence renormalize the
scattering amplitude beyond the FBA.

In [7], Derevianko extended Huang and Yang’s approd&jhtd the anisotropic dipolar
interaction, and showed how it is possible to go beyond the Born approximation in a dipolar
gas system. The derived pseudo-potential, however, is non-Hermitian in the low-energy limit,
and therefore cannot be easily used for constructing the effective theory of strongly interacting
dipolar gases. Inq], the authors studied the systems of bosonic dipoles via Monte Carlo
calculations, and found that the ground-state energy can be well explained by Yi and You'’s
pseudo-potential within FBA if one uses a dipole-dependent s-wave scattering. But the validity
of applying it to polar molecules with large dipole moment in a strong field is still questionable,
because the higher-order renormalization (FBA is the first-order perturbation) to the scattering
amplitude of thenon-s-wavehannels is not included at all. For example,i0]f, Deb and You
found that the scattering matrix element between s-wave and d-wave channels also has strong
deviation from the FBA result when near the shape resonance. It is therefore reasonable to
believe that such a kind of deviation should also occur in other channels in the stronger dipole
moment regime, which can be easily achieved by applying a strong electric field in a polar
molecule system. As a result, developing a correct and widely applicable pseudo-potential and
the associated many-body theory for systems of dipolar gharolecules is a very important
and crucial step for future theoretical and experimental studies.

In this paper, we derive a complete, effective many-body theory that can correctly describe
bosonic polar molecules both in the weak and strong interaction regimgsrarehr the shape
resonance. The resulting effective Hamiltonian is modified by additional three-point and four-
point interactions, which may significantly change the nature of condensate fagfilmics.

For example, when the dipole moment is near the first s-wave shape resonance regime, we
find that the additional interaction (new terms beyond the FBA) can reduce the anisotropy of
the condensate profile. In a two dimensional (2D) uniform system with the dipole moment
perpendicular to the plane, we find that the phonon dispersion scalgggaginstead of|q|

in the typical Bogoliubov mode) in the long-wavelength limit, showing the same low-energy
physics as 2D charged bosons with Coulomfr §linteractions 11]. As a result, our theory is
important not only in the study of strongly interacting polar molecules, but also in the possible
application of simulating the liquid phase of 2D charged bosons by neutral particles. Such
a simulation cannot be done in ion traps because of the strong Coulomb interaction energy
compared to the kinetic energy. These results may also be useful in studying the properties of
a high T, superconducting thin film, where the coherent lengths of Cooper pairs are known to
be very small as a composite charged bosidh [

1 To extract the value oAaflr,"), we use the results shown in figure 2 @] for the scattering matrix elements of
different channels.
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The paper is organized as follows: in sectiymve first discuss the general scattering theory
of dipolar interaction and briefly review theories used in previous works. In segtwe used
an exactly solvable model to examine the validity of the FBA of dipole interaction. In settion
we derive the correct effective theory and the associated Gross—Pitaivskii equation for bosonic
polar molecules in a 3D system. We then discuss in se&jdhe condensate wavefunction
by using the variational method. Finally, in secti®nwe extend the 3D results to develop an
effective theory in the quasi-2D system and calculate the phonon mode dispersion as well as the
Kosterlitz—Thouless transition temperature. We then summarize our work in séction

2. Low-energy scattering theory of dipoles

For the convenience of later discussions, we first briefly review recent progress in the scattering
problem of dipolar gas, where the electritagnetic dipole moment is polarized by the external
electrimagnetic field along the-direction. The most general form of the scattering amplitude
between two identical particles in such a situation can be expressed as

flK) =47 ) D i (K (0 (K), (1)

Im I'nv
where the scattering matrix elemetf{™ (k), depends on the relative incident momentukp,
and the summation is over evérfor bosons and odtl for fermions. Yim(K) is the spherical
harmonic function of unit vectdk. At large distances, the inter-particle potential is dominated
by the dipolar termVyy(r) = D?(1 —3co£6)/|r |3, whereD is the electric dipole moment in cgs
units (for simplicity, here we use electric dipoles to formulate the theory for polar molecules,
while a similar version for magnetic dipolar gases can also be obtained eds#ydhe angle
between the distanageand the dipole direction (polarized in taedirection). However, at short
distances the potential becomes much more complicated due to the Coulomb and spin exchange
interactions between electrons. Deb and Yb{ first calculated the scattering matrix elements
between two electronically polarized atoms within a model potential and studied how they
change as a function of the external electric field. Based on the numerical results, Yi ar@ijl You [
then proposed a pseudo-potential:

2

4 ash
Vps(r) = M
to calculate thdow-energyscattering matrix element within the FBA in the limit of weak

external field. Heres = —t52(0) is the s-wave scattering length in the zero field limit. Within
the FBA [3, 4],

S(r) +Vqy(r), (2

—-M
4rh?

whereag = MD?/h? is a length scale an&,(x) is the Legendre polynomia is the angle
between the momentuknand thez-axis. As a result, the associated matrix elements become:

L 2
fa(k, k') = / dr * v () = —as— 3% P, (COS6k_x') ,

o0

'm/ . 4 A A A d . .
tBInT<k>=4\/§adn'—' f A Yim (1) Yy (F) Yao(r) %n(r) jin(r)

kre
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with j; (r) being the spherical Bessel function. Hegés a cut-off in the atomic length scale and
therefore we can always take. — O in the low-energy limit. In the above FBA result, all the
short-ranged effects are included in the s-wave @gjtdnly, while all other matrix elements,
tglr;"(O), are proportional to the same length scalgx D?. Therefore, it is easy to see why
such results cannot be valid when the dipole moment (or external field) is sufficiently strong as
higher-order renormalization becomes important.

In [7], Derevianko developed a different pseudo-potential for dipolar interaction to go
beyond the FBA. Although the most general expression of the pseudo-potential is derived
for each scattering channel and the results are in principle applicable to the strong interaction
regime, only one term (the scattering between the s-wave and the d-wave, ig§(@he- t35(0)
term in equationY)) is evaluated within the leading order perturbative method (equivalent to
the FBA level). In fact, we observe that Derevianko’s result for the on-shell scattering channel
(k] = |K’|) is equivalent to the first two terms of the FBA result (i.e. the fgllk, k”) is replaced
by —as— %‘ [P2(cos6k) + P>(cosby)], usinngo(I?) = /5/47 P>(cos6y)). This explains why
the meanfield calculation by Yi and Youl@], which included only the s-wave and s—d
scattering channel of the pseudo-potential®@f [s not consistent with the previous FBA result
even in the weak dipole moment regime, where the FBA is supposed to be valid. (We note
that this inconsistency will exist even if Yi and You had used the corrected coefficient derived
in the erratum of T]. The key point is that contributions from all other scattering channels
are all proportional td? within the FBA and hence cannot be neglected compar¢gft0).)

In [9], Bortolotti et al claimed thatVps(r) in equation ) can be a good pseudo-potential if
only one uses a dipole-dependent s-wave scattering lengtlagi®)). However, their results
cannot apply to the strong dipole moment regime when the higher-order renormalization of
the scattering matrix element in other channels (different from s-wt§fjein realistic polar
molecule systems of high polarization. Therefore, a general and useful approach to study the
low-energy many-body physics of strongly interacting polar molecules is still needed.

3. Criterion for the first Born approximation

For completeness, we now explicitly examine the criterion for justifying the FBA in the low-
energy limit. We consider the following model potenti&yg (r) = Vy(r) for |r| >r., and
Vimai(r) = oo for |r| <r.. Although this model potential is over-simplified compared to the
realistic interaction potential between polar molecules, it still catches the most important feature,
anisotropic dipolar interaction, and hence should be useful in studying the validity of the Born
approximation in the low-energy limit. The full scattering wavefunctjo) can be solved by:

M [ dr
W(r)ZWO(r)—F/ 2G0T Vina(1) 1), 3)
T
Wheref’ dr’is for|r’| > r; only, and

Yo(r) =4r Y i €™ coss (k) jni (k. 1) Vi (K) Yim(F) (4)

Im

is the exact scattered wavefunction for the hard core potential of radigswithout
dipole moment. Here, we have definga, (k,r) = j(kr) —tans (k) nj(kr) with § (k)=
tam1(j, (kro)/m(kre)) being the scattering phase shift(x) and n;(x) are the conventional
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spherical Bessel functions. Green’s functioB(r,r’), satisfies V2G(r,r')+k?G(r,r’) =
—475(r —r’) with the boundary conditiolG(rf, r') = 0, and therefore can be evaluated by
using separation of variables. After some straightforward calculation, Green'’s function can be
expressed as

K
G 1) =) Yin®'.#) Yin(0. ¢)-— 5 imik ro) bV (kr.), (5)
Im

wherer.. _, is the larger (smaller) one ofandr’, andhl(l)(x) = || (X) +in;(X).

Within the FBA, the scattered wavefunction is given by the first-order iteratigqr) =
Yo(r) — iz f’ G(r, r') Vimal(r') ¥o(r'). Therefore, its validity relies on the assumption that the
change of the Wavefunctlon is much smaller thigkr ) in thewholerange of spacelld]. We can
therefore define a parametérto measure the deviation ¢&(r): & = limy_olimy - [¥e(r) —
Yo(r)|/|Yo(r)]. In such a limit, we havey(r) ~ % +O(kre), where Ar =|r| —re < re.
Expanding Green’s functionG(r,r’), in the smallr regime, we obtaian(r)—wo(r) =
2. % MD? ~+O(kro). As a result, the condition to justify the FBA is= 3fr <« 12, For
example, We consider the magnetic dipolar atét@r, with r. ~ 1008, as the typical length
scale of van der Waals interaction. We figl ~ 0.4 < 1 and this explains why results obtained
in the FBA for>2Cr are comparable to experimeng; f]. However, for polar molecules with
electric dipole moment of the order of a few Debyes, the valueaain easily be several hundred
or more, where a shape resonance can occur in different channels to break down the FBA.
Therefore, in order to correctly describe the effective many-body physics of polar molecules,
one needs a self-consistent theory beyond the pseudo-pot&hiia), and the FBA.

4. Effective Hamiltonian in 3D space

To study the low-energy physics of a general dipole interaction in the many-body medium, one
has to use aeffectivetwo-particle interactionI”, which is just the vertex function integrating

out all the contributions of virtual scattering in the high-energy linfig][ A complete
calculation of the vertex function is usually not available (except in some special models of
1D systems), but can be well approximated by using the standard ladder approximation (see
figure 1). It is well known that such a ladder approximation is correct in the low-density limit,
and is therefore a very suitable approximation for systems of dilute cold atoms/molecules.
Following the standard approach for evaluating the Bethe—Salpeter equation of bosonic
particles [L5], we can calculate the effective two-particle interaction (i.e. vertex function) within
the ladder approximation by using the two-particle scattering amplittige,p’):

M
22 (P PP Po) = —f(p, p>+—Zf<p,k>f<p k)*

x( 1 + . > (6)
e+2Mpu/h?> —k2+i0* k2—p2—i0* )’

2 The above result is also supported by the numerical calculatio®],invhere the dipole momentdependent
s-wave scattering lengtlas = r, becomes invalid when dipole moment is large but still away from the shape
resonance regime.
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P, p, P, P,
pl p2
Tpp' P.R)= =i + + o
p3 p4
p3 p3 p4

P,

Figure 1. Series expansion for effective interaction in the ladder approximation.
The solid line represents Green’s function of bosonic particles and the zigzag
line is for bare interaction. Hee= 1(p; — p,) andp’ = £(ps — p4) are half of

the relative momentum, arfl= p; + p, = ps + p4 is the total momentum of the

two scattering particles with frequen&y (see also15]).

wheree = ¥ (hR, —h*P2/4M) is the total kinetic energy in the center-of-mass frapés the
chemical potential anf is the system volume.

Using the fact, f (p/, k)* = f(k, p’), the final term of equation6] can be evaluated
explicitly by integrating over the solid angle of momentlmin the scattering amplitude,
equation {). Furthermore, since the partial wave scattering matrix elenightk), is known
to be insensitive to the incident momentumin the low-energy limit, we can also neglect their
momentum dependence and replace their value by a congfad). As a result, the last term
of equation ) can be calculated to be

@ )3/00 k? dk ( 1 N 1 )
T -
o @73 \e+2Mu/n>—k2+in kK2—p2—in

x [Z D 0 1m(0) Y (D) wmm’)} , 7)

LIm 1”7

where we have seh = m' due to the rotational symmetry about the polarization axislI{ is
easy to see that the real part of the integration cancels out, and the imaginary part is proportional
to v/2Mu/h? in the limit of low-energy scattering |, ¢ — 0). Therefore, the last term of
equation ) can be shown to be negligible when compared with the second tefmp’), in
the low-density limit, i.e|t\™ (0) né/Dg| « 1. (Herengp is the 3D particle density.) As a result, in
the low-energy and dilute limit, one can uBép, p’) = %’”‘2 f(p, p) as an effective ‘pseudo-
potential’ in momentum space (there is no dependence on total momentum and energy in such
a limit and we could omit them ). Note that, different from the FBA used in the literature,
we do not have to assume weak bare interaction in the above derivation (strong interaction
may still give a small value of the scattering matrix eleméif? (0)[, in the low-energy limit,
just as in the usual s-wave scattering of cold atoms). Complicated electronic structure and
shape resonance effects are all included in the full calculation (or experimental measurement)
of the matrix elementsq'r/nm/(O), in all channels. In the rest of this paper, we will study the
general effective theory and possible new many-body physics beyond thevEBautdirectly
evaluating the scattering matrix elements.

Using the derived pseudo-potential (or effective interactidi(p, p’) = #’”‘zf(p, P,
we can write down the interacting Hamiltonian in momentum space by using the second
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guantization formalism:

Hi=5g Z 85,2+p8p/2-p8p 2 Bp 21y T (P. P). (8)
p.p'.P

whered, andég are field operators for bosonic polar molecules at momepturhe momentum
summation from now on is restricted to the low-momentum regime as implied by the effective
interaction, I"'(p, p’). In order to address the effect of pseudo-potential beyond the FBA
(equation )), we can divide the contribution of the pseudo-poteniigp, p’), into three parts:

h2ag

4 4t h?
I'(p,p)= +Va(p—p') — v fa(p, P, 9)

where the first term is from the known (dipole moment-dependent) isotropic s-wave scattering,
the second term is the usual FBA result for anisotropic dipolar interaction, the third tgyms,
the scattering amplitude deviating from the known FBA results. It can be denoted as

fa(p1, p2) = —4m Y I Y " AG” Vi (B) Yim(D2), (10)
I m
with Aaf,r,") =—j " (tI m(0) —th(O)) being thedifferencebetween a full matrix element and its
FBA result. Here) ", has excluded the=1" = 0 term. Note that in the limit of a weak external

field, we have the following orders of magnitudgg= O(1), Vg = O(D?) andAaf,’?“) = O(D%).
Therefore, it is easy to see that the pseudo-potertiashown in equation9) has a very
smooth connection with the known FBA resul8s 4, 6, 9] in the limit of small dipole moment.
From equationsg) and Q), it is straightforward to write down the full effective Hamiltonian to
describe the Iow-energy many-body physics of polar molecules:

H= Z(Ep — /,L)a a +— Z aplapzvext(pl P2)
p

Pl P2

1 N
) > 8o, 8r 8072 5,80 0up,
p1,p2,P
A7 h?ag A h?ag
X +Va(P1 —P2) — M fa(P1, P2) |, (11)

whereVe(p) is the external trapping potential in momentum space. Note that equafiphgs
included scattering from all channels and is also consistent with the FBA results in the weak
dipole limit (| fo| o« ©(D*) asD — 0). When the external electric field is strong enough, there
will be some modification of the scattering amplitude to be beyond the results of FBA even in
channels different from the s-wave, |Aa1(m) #0 forl,1” £ 0. Calculating the magnitude of
such a modification beyond the FBA has to be based on the first principle calculation of two
scattering molecules, and is beyond the scope of this work. Our interest in the present paper, is
in studying the effective Hamiltonian and the possible many-body physics fhenknown.

In order to compare with the existing theory of weakly interacting dip®e4,[6, 9], it is
instructive to express equatiohl] in real space. Details of the transformation are shown in the
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appendix. The final result is

_ / dr T (r) [_

1 A o o N
v f dr / A VT — 1) 910 1) () (1)
2,/mh? .y [\ o~y r © 2
— /dR [w (R+§> " (R—é) XI:AaOI dio(R) + h.c.
h? . .
DB / dR G (R) drm(R).
I/ m

ext<r>] ¥ (r)

(12)
wherey (r) is the bosonic field operator in space. H&ré, is defined to exclude any term with
| =0orl”=0, and we have used the fact thmf’“) #0onlyfor|l —1'=0,2,4,...duetothe

anisotropic nature of dipole potentialy(r) o Yoo(f), and its higher-order effect As shown
in the appendix, we have defingy(R) = &R [ dr¥n® R+ L)y (R—5) as a ‘pairing’
operator in the angular momentu¢h m) channel with a spatial Wavefunctionﬁm(f)/r3.
Although such pairing operators do not represent true composite particles, they can be used
to describe the relative motion of two dipoles before and after scattering: the first term of the
last line indicates an association—dissociation process between a pair and two dipoles, while
the last term describes a transition between ‘pairs’ of different angular momentum channels.
These two novel interaction terms may bring completely new physics in strongly interacting
polar molecules, and are worthy of further investigation in the future.

Starting from the effective Hamiltonian, equatiat?), we can also derive the associated
Gross—Pitaeviskii-type meanfield equation for condensate dynamics by usigy dt =
[, H] and approximating the bosonic field operatgr(r), to be ac-number, ¥ (r). The
resulting equation can be written in the following form:

oW —h?v?
m(r):[ o —u+Vext(r)+/dr’Vps(r—r’)lw(r’)lz]\v(r)

2 /mh? [ dr’ a+npn
M / THE [Z g2 ol )}
X | W(r)*w (r — r_/) v (r +r_/> +W(r —r)*w (r - r—,>2
2 2 2
2(4m)?h? —
S K/I) /dI’l/drz‘IJ*(r —r) ¥ (r —~ r142rr2> v (r _h 5 rz)

7 m Ar (l +D! A (| + D!l 7
X = Z A ( )|:(2 )3 Im( D5 2l/2 r_3i| |:(2 )3 Im( ) o2 @], (13)

IIm

ih

where W(r) = (w(r)) is the condensate wavefunction. Similarly, one can also derive the
associated Bogoliubov—de Genne equations for the elementary excitations. Note that the
effective Hamiltonian, equationsl) and (L2), and the meanfield equation, equatidrB)(
contain all the effects beyond the simple FBA results, and they will reproduce the known FBA
results when taking\a™ = 0.
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5. 3D condensate profile

5.1. Gaussian variational wavefunction

To study the aspect ratio and the stability regime of the condensate profile, it is convenient to
use the variational approachd]. Here we use a Gaussian-type trial wavefunction,

VN exp(—p®/2RE — 72 /2R?)
T3/4Ry Rzl/Z

for the condensate wavefunction in harmonic trapping potentgl(r) = %Mwé(x2+y2)+

%Mwizz, wherewy andw, are the associated trapping frequencies. Herethe total number of

dipoles, andR, and R, are the Gaussian radii of the condensate inxthg plane and along the

z-axis, respectively. The variational energy can be obtained easily from the effective

Hamiltonian in the momentum space, equatidil)( by replacingdx by ¥, = (&) =

\/% [ drw(r)e ", We therefore obtain

E(R.p) _ 1+28% RA@*+p%) 2N& | 16Ay(8) Nag

W(r) = (14)

Eo  282R2 212 V2R3 3J/10m R
326N | v 0 2 0N AxO)
+ — | > Ag0AB2-2)  AdYAB A , 15
Vor e | £ a A 2 aABIAB) (15)

whereA (B) = Y41 f_ll dx(lﬂﬁzﬁ_%. B=R,/Ry, and « = woy/w, are the condensate and

trapping aspect ratios. We have also scaled all the length scaleas( A& and Ry) by
the horizontal oscillator lengthysco = vh/May (i.e. Ro = Ro/a0se 0, etc), and usedE, =
Nh?/2mays, 07 as the energy scale.

The first two terms in the right-hand side of equatibB)(@re from the kinetic and potential
energies, respectively, and the third is from the s-wave scattering channel. The fourth term
is from the contribution within the FBA and the second line is from the effects beyond the
FBA. Again we find that the whole meanfield energy of equatit®) (vill become the same
as calculated within the FBA by takingéfﬁ’lz = 0. Using the fact thath,(8) = (48)~ 1, we

find that the contribution of the FBA is of the same form as the term Wﬁl(‘f; (both of them

are proportional toA,(8)). However, such a coincidence is simply due to the special form
Gaussian trial wavefunction. Using other trial wavefunctions can easily give different aspect
ratio dependences of these two effects. Besides, we also notéd\titat 1) = 0 for | £ 0,
showing that for a spherically symmetric condensgte=(1), only s-wave scattering channels

is relevant: scattering in finite angular momentum channels is cancelled out due to spherical
symmetry of the condensate profile. When the condensate profile is highly anisotropic due to
external confinement (say in cigar shapes> 1, or in pancake shapg,« 1), the effects beyond

the FBA will become very crucial.

5.2. Example: near shape resonance

For the general form of the effective Hamiltonian of equatiohy @nd (12), values ofa"”

have to be obtained from first principle calculatioBs]0], which is however beyond the scope
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of this paper. In fact, due to the highly nontrivial inter-molecule interaction at short distances,
the low-energy scattering matrix elemetjf" (0), can be very different from the results of the
Born approximation in the strong dipole regime. Here, we consider the simplest case to study
the effect beyond the FBA: we assume the external electric field is still weak but near the first
shape resonance regime, where the shape resonance occurs in the s-wave channel so that both
t59(0) andtZJ(0) strongly deviate from the results in the weak interaction limit. Scattering matrix
elements in other channels are less affected because of the centrifugal potehtalforhis
picture is also consistent with the numerical results showmh@f) vhere their numerical results
of t;5(0) are almost unaffected by the shape resonance in the s-wave channel. (But it does not
exclude the possibility of having a significant deviation in other channels in the regime of much
stronger dipolar interaction.)

Under such an assumption, we may considey # 0, and Ag'() = 0 for all (I, 1") #
(0,2), (2,0) or (0,0). As a result, the variational energy of equation (4) becomes (using

Ao(B) = 1/4B):

E(Ry, B) 1+282 RP(22+B% 2N [és ( &y ~<o>> }
— i _[Z+8( = —-A A . 16
Eo 2B2R2 * 2Kc2 ¥ \/ERS B * 3/5 %oz ) elP) (10)

From the above result, we find that the contribution of maéog term can reduce (since

Aaéog > 0 near the first shape resonance, skE@)[the effect of the anisotropic feature of
dipole interaction. Although this result is derived from the Gaussian trial wavefunction, such
a reduction of anisotropy of the condensate wavefunction should still be qualitatively correct
for a more accurate condensate profile.

We note that the ground-state energy and the pseudo-potential study have also been
discussed in9], where they include the dipole dependence in the s-wave scattering length
(i.e. as(D)) and use the FBA results (equatid?))(for the dipole interaction near the first few
shape resonances. In other words, they did not consider the effect of strong deviagfif)of
from the FBA, which is a very significant result as shownlifi][ If considering an even stronger
dipole moment (larger than the value for the first few shape resonances), where the scattering
amplitudes may deviate from the FBA result ai channels, one has to solve equations
(1D)—(13) with finite values oanf,T) for the correct many-body physics of polar molecules.

6. The effective Hamiltonian and excitations in 2D

In a 2D homogeneous system, we can assume that the wavefunctiorziatisas of Gaussian
type: ¢ (2) = 711/4—1Rl/2 e Z/2R whereR, is the width of such a quasi-2D potential layer. After
integrating out the degree of freedom in thdirection (i.e. along the direction of the external
electric field) of the 3D effective Hamiltonian, equatidrl), we obtain
p A 1 ottt B R
p P1,P2,9

1

"2q. > Va(PL P8 50,065 1,00/ 5,06 50, (17)

p1,p2,P
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where we defind?)p and Bg as the field operators in the 2D system wjtlbeing thein-plane
momentum vector from now o2 is the 2D area, and

4 h%ag
V21 MR,
is the contribution of s-wave scattering.

hag 4v/2r  (|q|R,
MR, 3 °\ 3 )’

whereg(x) = 1— (3/7/2)x e Erfc(x) with Erfc(x) being the complementary error function.
We also have

8./27h? .
Va(p1. P2) = J_ Z > AV R (p1) Frm(p2) (18)

Vs =

Ve(Q) =

to account for the contribution beyond FBA, where

Fim(P) = R, / dp, € R Y (P)

T e [+ —m]! X2 o,

with ¢, = tam*(py/ px) being the angle in the 2D plane.

At zero temperature the dipolar atofmwolecules condense at=0, so that the total
energy isEop = - [Vs+ Vg (0) + VA (0, 0)], with the chemical potential being = nyp[Vs+
Vs (0) + VA (O, O)] wheren2D = N/, is the particle density in the 2D plane. Keeping only the
condensate parbg = b = /Nzp ) and the quadratic order of fluctuationss£ 0), the effective
Hamiltonian becomes

2

Hett =) (;’—m — u) ala, + % ? [Vs+Va(p) + Van(p, 0] (82", +a_,a,)

p

+%%j[4vs+2vs<0>+2vs<p>+2vA (5-5) v (5.-5)]aa. o

where we have used the fact thgt(p1, p2) = Va(—p1, —P2) = Va(p2, p1). Finally, we could
use the Bogoliubov transformation to diagonalize the above Hamiltonian and obtain the
following phonon excitation spectrum:

2 2
a)rz) = |:2p—M +NpW. (p)} |:p—m +2n,p (Vs+ Ve (P) +W+(p))] (21)

whereW, (p) = Va (5, 5) +Va (5, —5) — Va(0, 0) £ VA (p, 0) accounts for the effects beyond
the FBA results.

Similar to the 3D case, we now study the situation when mag); #0in VA (p1, p2), and
obtain

—2«/107rh2

Va(p1. ) = —— o at [9(Ip1lR,) +g(Ip2l Ry ]
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@p/EHp
N >

0 1 2 3
IpIR,

Figure 2. Phonon dispersiony,, as a function ofip|R, in the 2D system.

NapAassR, =0,0.05 and 0.1, for curves from the bottom to top. The other

parameters arenypasR, = 0.5, nypagR, = 1.4 and Egop =h?/MR? is the
energy scale.

The calculated dispersiony, for different values of\al) > 0 are shown in figuré. There are

two significant effects to be noted: Firstly, in the shoft-wavelength regime, the roton minimum,
predicted ] as a feature of dipolar interaction for the 2D bosonic polar molecules, becomes
weaker asy,, becomes stronger. Secondly, in the long-wavelength limit, instead of the typical
linear dispersion], we findw, = C/|p|R.(1+O(|p|R;)) with the prefactor

2 h2n
C= 2\/6(5n3)1/4\/ Aay) (a5+ 38— 2«/§Aa§,?;> X FiD.
V4

As a result, the phase fluctuation becomes much stiffer than predicted in the FBA, showing
an enhancement of the condengatgerfluid density at zero temperature. More precisely,
we can calculate the normal fluid densipy, according to the transverse current correlation

function [L7). The sublinear dispersion ab, gives pn(T) = %%@L{, which shows a

much smaller temperaturel' ] dependence than the result obtained for linear dispersion

(on = % if w, = c1h|p| [17]). According to Landau’s two-fluid model and the universal
T 1

relation between the 2D superfluid density and the Kosterlitz—Thouless transition temperature,
the superfluid transition temperaturé. )X of the 2D dipolar system is then determined by

ke Te = mh?ps(Te) /2M = h?(nap — pn(Te))/2M. At temperatures beloW., the single-particle
correlation function has a power-law decay with zero condensate density. These results are
also equivalent to a 2D charged Bose g¥sr) = Q?%/r) [11] with an effective chargeQ =

Cv/ R,M/nyph? . Such an interesting equivalence implies the possibility to use neutral polar
molecules to simulate a 2D charged boson system in liquid phase (not dopable for ion traps
due to the strong Coulomb interaction and a large atom mass), which may be important for
understanding the superconducting Cooper pairs in ahidgiin film [12].

7. Summary

In summary, we have developed a complete effective many-body theory for 3D and 2D dipolar
Bose gases beyond the simple FBA. One of the significant consequences is that the dipolar
interaction effect in the 3D condensate can be reduced near the shape resonance regime. For
the 2D system (highly anisotropic regime), such an effect brings a significant change of the
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low-energy excitation spectrum. We believe that there should be more interesting results for a
polar molecule system in the strong external field regime, where all scattering channels (besides
the t3 channel) can deviate significantly from the FBA. Therefore our results are especially
important for future studies of the many-body properties of strongly interacting polar molecules.
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Appendix A. The effective Hamiltonian in real space

We note that the single-particle part, s-wave scattering, and the FBA part of interaction can
be transformed easily into real space as shown in the literature; therefore here, we just show
the results for the interaction part beyond the FBA, ie the last term of equatipnTo
Fourier-transform the effective Hamiltonian, we uge= f w(r) e P’ and the interaction

part beyond FBA (denoted biyl/) becomes:

, —47Th2 1 Ak Ak A A
Hi=—V 2 8p)24p,8p/2-p, B2, 8P 2:4p, T (P1, P2)
p1,p2,P
(4r)*h? 1 , + a A
= 50 > aghitty (pl)YIm(pZ)/drlerdr3dr4
pl,pz,P I1"'m
« @P/24p1) 11 d(P/2-p1) T2 o=i(P/2—p2) T3 o—i(P/2+p2) T4 1ﬁT(rl) @T(rz) g& (ra) 1,5 (rg)
(47T)2h2 1 * A A
= oo ZZ Aay” Y (PD) Yim(2)
p1,p2 II'm

: , a re\ » r n r
x / dR dr, dr, €PiT1 g iPeT2 wT(R + El) ¢T<R 21) " (R - E) " (R + EZ) . (A1)
where we have integrated out the total momentBmand the center of mass position before
scatteringR’ = (r3+r4)/2. Note that the summation of angular momentum quantum number,
> 'my has excluded the pure s-wave scattering chahrel, = m= 0.
Now, we consider the expansion of a plane wave in spherical harmonic functions:

=47 Y i ji(kn) Y, (F) Yim(K) (A.2)
or equivalently
K 4ril ji (k)Y (), forr #0,
/koel Yim (€) = { VA s o, forr =0. (A-3)

Equation A.3) suggests that it is more convenient to separate terms with zero angular
momentum quantum numbenal’ = Aa\y, from the others in equationA(l) before

carrying out the momentum integral. (We note that the higher-order correction of dipolar
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interaction, V4(r) o Y5(f), can couple s-wave to higher-momentum channels in the strong
dipole momentum limit.) As a result, equatioi.{) can be rewritten as follows:

H|/ = H|/1 + H|/2’

H = (4”,3'2h2/der1drzt/?T(R+r—21) W(R—%) 7 (R—%)v? (R+r§2>

1 I/ZA 0) A A
% Z ()ZTaOI Z P e P22 (Y (B1) Yool P2) + Ygo(P) Yio(P2))

I P1.p2

=GO [ aran, it (R+0) 3 (R- D) Rd R

0

(-1)'2Aaf { }
x &P Y (Pr)
2 oum |a

47)2h? .
PO [ Rz iR R G (R-Z) b (R )
( 1)|/2A 0) 1 . A
e P22y, A4
XIZ N Qge 10(P2) |, (A.4)
(47)%h?

H, = /derldrzlﬁT(R+r§1) &T(R_r_zl)‘/}oq_r_zz)l/}(R-‘-r_Zz)

1 ) 1 - . 1 _in,. N
x5 ) Aalli [5 > _enn \ﬁi‘mwl)} [5 Y e Y.m(pz)} . (AB)
II’'m

where) |, in the last line is a summation excluding any terms witinl’ = 0. To get equation
(A.4), we have used the fact th@t! 20 eP’ = §(r) and have integrated out one of the relative
coordinates. Now we can integrate out the solid angle of momentum varighlasadp,) by
using equationA.3) for | # O:

1 ) 2
_ Py Pry
9 Ep Pt YnL(P) = / 02 /dSZ &P Y (P) = 4nl\ﬁm(r)/ 2 )3J|(I0f) (A.6)

where A is the momentum cut-off in the atomic length scater{'), due to the nature of
the effective Hamiltonian obtained by integrating out the high-momepgmergy contribution
within the ladder approximation of equatiof)(In order to regularize it to get a universal
expression, we can introduce another high-momentum cut-off, enside the integrand and
taking o to zero ¢ — 0%) in the final results. Using the fact that only even angular quantum
numbersl(= 2m’) are relevant for the scattering between bosonic polar molecules, and applying
the following identity:
(0.¢] / 11
””&f P jom (pry e dp = ZL IR
o= 0

o s (A7)
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for m" #£0, we can simplify equationA(6) further and rewrite the effective Hamiltonian
(H/, andH,) as follows:

242
H,&:%/der [W(R+r§) ot (R--) ¥ (R) ¥ (R)
O 4 ey D!
szi(zn)g Yio(F) o2 I?T—3+h.C.j|
_ Z*ﬁhzde [W (R+ ) ot (R——)Z |0(R)+hc:| (A.8)
|

HI/Z:MHT)ZhZ/derlerI/?T(R+r—21> &T(R—%) @(R—%) @(RJEZ)

l<—, . .m| 47 I+ 4 L (D
XEZ Aay, [(2 )3 Yim(f1) o2 E] [(Zﬂ)3va(rz)W§]

I’'m

Z”Z Agy" f dR ¢, (R) grm(R). (A.9)
11 m
where we have defined an effective pairing operator:
N _(+nn R r
$im(R) = 2|/2 / i Yim(®) " (R+ 2) " (R— 5), (A.10)

in the angular momenturth, m) channel to simplify the notation. Therefore, after adding back
the known single-particle Hamiltonian and the FBA results together, we can obtain the final
total effective Hamiltonian in real space as shown in equati@h (
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