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Resonant Raman Scattering by Elementary Electronic Excitations in Semiconductor Structures
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(Received 5 January 1999)

We explain quantitatively why resonant Raman scattering spectroscopy, an extensively used
experimental tool in studying elementary electronic excitations in doped low-dimensional semiconductor
nanostructures, always produces an observable peak at the so-called “single particle” excitation although
the standard theory predicts that there should be no such single particle peak in the Raman spectra. We
have thus resolved an experimental puzzle which dates back more than 25 years.

PACS numbers: 73.20.Mf, 71.45.–d, 78.30.Fs
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Resonant Raman scattering (RRS) involving inelast
scattering of light by electrons has long been a powe
ful and versatile spectroscopic tool for studying [1–10
elementary excitations in doped low-dimensional sem
conductor structures such as quantum wells, superlattic
and, more recently, one-dimensional quantum wire sy
tems. RRS has been extensively used in experime
tally studying the collective charge density excitation
(CDE) dispersion in semiconductor quantum wells, qua
tum wires, and superlattices for both intrasubband an
intersubband transitions. In the standard theory [11,12
which ignores the role of the valence band and simpli
tically assumes the photon to be interacting entirely wit
conduction band electrons, RRS intensity is proportion
to the dynamical structure factor [13] of the conductio
band electron system and therefore has peaks at the c
lective mode frequencies at the appropriate wave vecto
defined by the experimental geometry. Restricting to th
polarized RRS geometry [12], where the incident and sca
tered photons have the same polarization vectors indic
ing the absence of spin flips in the electronic excitation
the dynamical structure factor peaks should correspo
to the poles of the reducible density response functio
which are given by the collective CDEs of the system
In particular, the single particle electron-hole excitation
(SPE), which are at the poles of the corresponding irr
ducible response function, carry no long wavelength spe
tral weight in the density response function and shou
not, as a matter of principle, show up in the polarize
RRS spectra. The remarkable experimental fact, howev
is that there is always a relatively weak (but quite distinc
low energy SPE peak in the observed RRS spectra (ne
resonance) in addition to the expected strong CDE pe
at higher energy. This observed SPE peak in the pola
ized RRS spectra is a factor of103 104 times stronger
than that given by the calculated dynamical structure fa
tor in the standard theory. This puzzling feature of a
ubiquitous anomalous SPE peak (in addition to the e
pected CDE peak) in the observed RRS spectra occu
in one-dimensional GaAs-AlGaAs quantum wires, two
dimensional GaAs quantum wells, and even in the dop
three-dimensional bulk GaAs systems [1]. It exists i
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the low-dimensional structures both for intrasubband a
intersubband (i.e., transitions along and perpendicula
the confining quantization direction) excitations, and
zero and finite magnetic fields. No theoretical unde
standing of this phenomenon exists in spite of the gr
ubiquitousness of the effect.Ad hoc proposals [2,14] have
been made in the literature that perhaps a serious br
down of momentum or wave vector conservation (ar
ing, for example, from scattering by random impuritie
is responsible for somehow transferring spectral weig
from large to small wave vectors. Apart from being com
pletelyad hoc, this proposal also suffers from any lack o
empirical evidence in its support—in particular, the o
served anomalous SPE peak in the RRS spectra does
correlate with the strength of the impurity scattering
the system. The ubiquitousness of the phenomenon s
gests that it must arise from some generic principle und
lying RRS itself, and cannot be explained by nongene
and manifestly system-specific proposals which have b
made occasionally in the literature. We emphasize t
this very basic lack of understanding of why an SPE pe
shows up in the experimental RRS spectra of doped se
conductor structures is an important problem because
RRS is one of the most powerful techniques to study
interacting electron system in one, two, and three dim
sions, including even quantum Hall systems.

In this Letter we provide a quantitative andcom-
pellingly generic theoretical explanation for this puzzle
We emphasize that the generic nature of the phenome
strongly suggests that its quantitative explanation m
lie in the fundamental principles of RRS and must n
depend on the experimental details [1–10], such as
system dimensionality, intrasubband or intersubband
citations being probed, the existence (or not) of an e
ternal magnetic field, etc. Our theory depends only
the resonant nature [12,15–17] of the experiment (i.e.,
laser frequency of the external light used in the RRS
approximately equal to the fundamental band gap of
semiconductor, which causes a resonant enhanceme
the RRS intensity allowing the observation of the eleme
tary electronic excitations in the conduction band whi
usually do not couple to light).
© 1999 The American Physical Society
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In Fig. 1(a) we depict the schematic diagram [15–17]
for the two step process (steps 1 and 2 in the figure) in-
volved in the polarized RRS spectroscopy at the E0 1 D0
direct gap of GaAs [17] where an electron in the valence
band is excited by the incident photon into an excited (i.e.,
above the Fermi level) conduction band state, leaving a
valence band hole behind (step 1); then an electron from
inside the conduction band Fermi surface combines with
the hole in the valence band (step 2). Electron spin is
conserved throughout the scattering process. In the stan-
dard random phase approximation (RPA), which neglects
all interband resonance effects and considers only the con-
duction band, the RRS intensity will then be proportional
[11] to the imaginary part of the reducible response func-
tion, which is given by 2ImP�q, v�, where P�q, v� �
P�0��q, v� e�q, v�21 is the reducible polarizability with
P�0��q, v� as the noninteracting conduction band elec-
tron polarizability and e�q, v� � 1 2 yc�q� P�0��q, v� is
the appropriate dynamical dielectric function [with yc�q�
as the Coulomb interaction]—the geometric series of
“bubble” diagrams in Fig. 1(c) is the characteristic fea-
ture of a CDE or a plasmon excitation. We show in
Fig. 2 some typical calculated one-dimensional (1D) RRS
spectra based on this simple formula which has been uni-
versally employed [11] in the literature. The calculated
spectrum gives reasonable quantitative agreement with
the experimentally observed [6] polarized RRS spec-
tra for the CDE peak in 1D GaAs quantum wires (the
same is true in higher dimensions—see, for example,
Ref. [11]) except for one important feature—the theoreti-
cal spectrum has only one peak corresponding to the CDE,
whereas experimentally one always sees an SPE peak at
resonance.

We now consider the full resonance situation including
the valence band which obviously [12,15–18] plays a
crucial role in the RRS experiment because the external
photon energy must approximately equal the E0 1 D0
direct gap for the experiment to succeed. We can write
(assuming the usual p ? A coupling of light to matter)
the RRS scattering cross section [17] for the resonant
scattering process for the conduction band electrons as
FIG. 1. (a) Schematic representation of the resonant Raman
scattering in the doped, direct gap two band model of GaAs
nanostructure. vi and vf are the initial and final frequencies
of the external photon. Steps 1 and 2 are described in
the text. The RRS is a two step process that involves
steps 1 and 2, leaving an excited electron-hole pair in
the conduction band. (b) Diagrammatic representation of the
conduction band irreducible polarizability, P�0��q, v�, in RPA
calculation. (c) Diagrammatic representation of the conduction
band reducible polarizability, P�q, v�, in the standard theory.
yc�q� is the Coulomb interaction.

(using i, f to denote the initial prescattering and the final
postscattering states)

d2s

dV dv
~

vf

vi
�SF jMFI j

2d�EF 2 EI 2 v��I , (1)

where vf , vi are the final and initial photon energies,
and v is their difference [h̄ � 1 and a sum over all
final electronic states, F, and an average over all initial
electronic states, I , are implied in Eq. (1)]. MFI is the
transition matrix element defined by (using the subscripts
c and y to denote the conduction and valence band
electronic Bloch states, respectively, in our two band
model) [19]

MFI � �FjSkg�k�cykck2qjI� , (2)
g�k� � n̂i ? n̂f 1
1

mc

√
c�kjn̂f ? pjk 1 kf�y y�k 1 kf jn̂i ? pjk 2 q�c

Eg 1 Ec�k� 2 Ey�k 1 kf� 1 vi

1
c�kjn̂i ? pjk 2 ki�y y�k 2 kijn̂f ? pjk 2 q�c

Eg 1 Ec�k� 2 Ey�k 2 ki� 2 vi

!
, (3)
where ck’ s are fermion operators of wave vector k and
the spin index is neglected; n̂i�n̂f , ki�kf , and vi�vf are,
respectively, the initial�final photon polarization vectors,
wave vectors, and frequencies; jk�c,y and Ec,y�k� refer to
conduction�valence band Bloch states and energies for a
wave vector k in the corresponding band; v � vi 2 vf ,
q � ki 2 kf are the energy and wave vector difference
of the photons in the experiment. Assuming the resonance
condition, i.e., vi � Eg 1 Ec�kF� 2 Ey�kF�, where Eg

is the E0 1 D0 band gap and kF is the Fermi wave vec-
tor in the conduction band, the usual backscattering ex-
perimental geometry, i.e., q � 2ki , and the well-satisfied
condition jkij � jkf j ø kF due to the long wavelength
(�5000 Å) of visible light compared with the Fermi
817
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FIG. 2. The dynamical structure factor in the standard theory
for 1D quantum wire system calculated by RPA in long
wavelength limit (q � 0.1kF). Vertex correction by Hubbard
approximation is also shown for comparison. The SPE peak
(inset) is much smaller (�1024) than the CDE peak in the
standard theory. Finite impurity scattering effect (included in
the theory) leads to the broadening of the peaks.

wavelength (�100 Å or less), Eqs. (1) and (2) can be
written as

d2s

dV dv
� 2Im

"
P�2��q, v� 1

	P�1��q, v�
2yc�q�
e�q, v�

#
,

(4)

where

P�n��q, v� �
22

�2p�D

Z
dDp

3
	A�p, q�
n 	nc�p� 2 nc�p 2 q�

v 1 id 2 Ec�p� 1 Ec�p 2 q�

,

(5)

where D is the dimensionality, and nc�p� refers to the
conduction band Fermi occupancy for wave vector p with

A�p, q� � 	Ev 1 �1 1 j� �p̃2 2 1�

1 j�2p̃ ? q̃ 1 q̃2�4�
21, (6)

where Ev � E21
F 	Eg 1 �1 1 j�k2

F�2mc 2 vi
; j �
mc�my ; p̃ � p�kF ; q̃ � q�kF ; and EF � Ec�kF� is
the Fermi energy of the conduction band electrons. We
have assumed parabolic band dispersions near the band
extrema with mc and my as the conduction and valence
band effective masses. Using GaAs band parameters
we can now calculate the polarized RRS spectra from
Eq. (3). Note that the resonance effects are nonpertur-
bative and depend crucially on the exact value of the
incident photon energy. Our theory can be considered
to be a resonant RPA theory which explicitly takes into
account the interband resonant process involved in the
RRS experiments.

In Figs. 3–5 we give our representative results for the
calculated polarized RRS spectra for intrasubband ele-
818
FIG. 3. The calculated resonant Raman scattering intensity in
the full theory including the interband transition for a realistic
1D quantum wire system. The SPE spectral weight is enhanced
by the resonance and is now comparable to that of CDE. The
parameters are chosen to correspond to the experimental system
of Ref. [6], where the resonance condition is satisfied. Our
theoretical results agree very well with the experimental data
shown in the Fig. 1 of Ref. [6].

mentary excitations for GaAs 1D and 2D structures. In
Fig. 3 the specific wave vectors and other system details
have been chosen for the experimental GaAs quantum
wires of Ref. [6]. Our calculated spectra at resonance are
in quantitative agreement with the corresponding experi-
mental RRS spectra shown in Fig. 1 of Ref. [6]. The
calculated SPE spectral weight at resonance in our Fig. 3

FIG. 4. The resonant Raman scattering spectral weight ratio
of CDE to SPE as a function of the resonance parameter, Ev .
For off-resonance, jEvj $ 0.5, CDE always dominates SPE,
but within the resonance region, jEvj , 0.5, the SPE could be
stronger than CDE as shown in the inset. All parameters are
the same as those in Fig. 3.
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FIG. 5. The calculated 2D resonant Raman scattering inten-
sity in the full theory in the long wavelength limit (q � 0.1kF).
Simple RPA result in the standard theory is also shown for
comparison. The resonance effect (Ev � 0.23) strongly en-
hances SPE and suppresses CDE in the 2D system similar to
the 1D system. The inset shows the very weak SPE peak in
the standard theory, which should be manifestly experimentally
unobservable.

is comparable to that of the CDE (to be contrasted with the
simple nonresonant calculation shown in Fig. 2). We em-
phasize that this spectacular enhancement of SPE spectral
weight in the resonant scattering process disappears as one
moves away from resonance. This can be seen in Fig. 4,
where we plot the spectral weight ratio of CDE�SPE
weight as a function of the resonance condition itself.
It is obvious that the SPE spectral weight, while having
a rather nontrivial structure around the resonance condi-
tion, is essentially zero far away from resonance where the
CDE dominates. Experimentally it is well known that the
SPE spectral weight dies off as the incident photon en-
ergy goes off-resonance. Our detailed theoretical results
provide specific nontrivial predictions about how the SPE
spectral weight should vary as a function of the incident
photon energy. Finally in Fig. 5 we show some represen-
tative calculations for 2D polarized RRS spectra (as appro-
priate for elementary conduction band excitations in GaAs
quantum wells) in 2D systems. While the quantitative de-
tails for the 2D systems differ from the corresponding 1D
results, the basic theoretical phenomenon is the same: the
SPE spectral weight is anomalously enhanced at resonance
compared with the simple RPA, whereas off-resonance the
SPE spectral weight decreases, eventually becoming neg-
ligibly small.

As a concluding note it may be important to emphasize
that the nomenclature “SPE” peak, which we have used
throughout this paper following the standard experimental
literature [1–10], characterizing the low energy RRS peak
is inappropriate since the SPE strictly corresponds to a
peak in ImP�0�. We also note that interaction effects
have been neglected in our irreducible response function
in the spirit of RPA, which is entirely justifiable in
two and three dimensions, but is open to question in
1D. We are currently [20] investigating 1D interaction
effects on the RRS spectra by going beyond the resonant
RPA scheme of Eqs. (1)–(6)—we find that perturbative
or mean-field (e.g., Hubbard approximation) inclusion
of interaction effects does not qualitatively affect the
RPA results. The striking phenomenological similarity in
the experimentally observed RRS spectra in one-, two-,
and three-dimensional systems is a strong indication that
generic resonance physics as studied in this paper (within
a resonant RPA scheme) is playing a fundamental role
in producing the low energy SPE feature in the polarized
RRS spectra.
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