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A theory of resonant Raman scattering spectroscopy of one-dimensional electronic systems is developed on
the assumptions théf) the excitations of the one-dimensional electronic system are described by the Luttinger-
liquid model,(ii) Raman processes involve virtual excitations from a filled valence band to an empty state of
the one-dimensional electronic system, diid) excitonic interactions between the valence and conduction
bands may be neglected. Closed form analytic expressions are obtained for the Raman scattering cross sections,
and are evaluated analytically and numerically for scattering in the polarized channel, revealing a “double-
peak” structure with the lower peak involving multispinon excitations with total §gift and the higher peak
being the conventional plasmon. A key feature of our results is a nontrivial power-law dependence, involving
the Luttinger-liquid exponents, of the dependence of the Raman cross sections on the difference of the laser
frequency from resonance. We find that near resonance the calculated ratio of intensity in the lower energy
feature to the intensity in the higher energy feature saturates at a value of the order gfinn@sya factor of
the ratio of the velocities of the two mode$Ve explicate the differences between the “Luttinger-liquid” and
“Fermi-liquid” calculations of resonant Raman spectroscRRS spectra and argue that excitonic effects,
neglected in all treatments so far, are essential for explaining the intensity ratios observed in quantum wires.
We also discuss other Luttinger-liquid features which may be observed in future RRS experiments.
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I. INTRODUCTION and then emitted at another frequency and momentum via the

One-dimensional1D) physics has become increasingly recombination of the hole in the valence band with another
important to condensed-matter science in recent decades Hléctron in the conduction barstep 2. The final state of the
cause many systems, including, for example, single wall carSystem contains one or more particle-hole pairs excited in the
bon nanotube$, organic conductord, superconducting conduction band. The dispersion of these particle-hole pair
nanowires’ spin chaing, and even ultracold atoms in highly States may be inferred from the energy and momentum dif-
anisotropic magneto-optical trapbave been developed to ference between the incident and the scattered photons
levels that allow experimental studies of hitherto unprec<{Stokes shift, while the naturgcollective mode(plasmon
edented extent and precision. Among these(diquasi-1D  and multipair excitation may be inferred from the depen-
systems, the semiconductor quantum wire struci@#/R)  dence of the scattering amplitude on the polarization of the
is one of the most important and widely studied, because oficoming and outgoing photons and on the energy of the
its simple band structure and highly tunable doping defisity.incident photon.

Also, great progress in microfabrication techniques has made The standard theory of Raman spectroscopy in

high quality samples available. semiconductof$'8is based on the Fermi liquid quasiparti-
Theoretically, one-dimensional systems are very well un-
derstood. The pioneering work of Tomondgauttinger? c

physics. However, the relation between the theoretical results

and Haldan¥ along with many other studies has produced {
an essentially complete understanding of the low-energy 1 (™
F
(b)
Eg

and experimental data is not as clear and direct as one would 1| |2 kg
like. For example, only a few unambiguous observations of e e
the fundamental concept of spin-charge separation have been i
reportedti-13 @i f
Resonant Raman spectroscq®RS has become a pow- —~_ g’
erful tool for studying the elementary excitations of electrons v //_\\F
in many different systems. Applications to low-dimensional @) (C)
doped semiconductor nanostructufego-dimensional quan-
tum wells or one-dimensional quantum wirésve been par- FIG. 1. (a) Schematic representation of RRS process in the di-

ticularly prominen€* In the usual RRS experiment, sche- rect gap two band model of electron doped GaAs nanostruciuyes.
matically represented in Fig.(d), external photons are ab- andw; are the initial and final frequencies of the external photons.
sorbed at one frequency and momentum by exciting an elegb) and (c) are the three-leg and four-leg scattering vertices for
tron from the valence band to the conduction ba&sigp )  electron-photon interaction.
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cle picture and neglects resonance effects. The neglect afuttinger liquid. In the Coulomb case we predict an asym-
resonance effects means that in the unpolarized geometryetric broadening of the spectral peak in the higher energy
(identical polarization of incoming and outgoing lighte  side arising from the curvature of the plasmon dispersion.
Raman process couples to the electron-density operator sge find that most aspects of the RRS spectra are similar to
the Raman cross section is proportional to the dynamicahose predicted by the Fermi-liquid approach. As noted in
structure faCtdIS'lg of the conduction-band electrons. Within our previous Wor|%5 characteristic Luttinger effects are re-
Fermi liquid theory and in the long wavelength limit relevant yealed in the dependence of the intensities on the difference

to Raman scattering, the electron structure factor has a of the |aser frequency from the resonance condition. Going
function peak at the plasmo(CDE) energy and a much payang the bosonic expansion developed in our earlier
weaker feature at a lower energy associated with mcohere%orkzs we present explicit results for the total spectral

particle-hole pairs. The lower energy feature is referred to aﬁ/eights of the charge boson and spin boson excitations in the

the single-particle excitatiofSPB peak. The calculated : ) i
RRS intensity therefore has strong spectral peaks when tr%olanzed RRS channel at zero temperature. Far-from reso

energy difference between the incident and outgoing photon ance we find th_at the spin-singlet mode at enegyfvr.,
coincides with the collective CDE mode frequencies at th as spectral weight much smaller than that_ of the charge
wave vector defined by the experimental geometry, while th®0S0n(i-€., plasmoy however, as resonance is approached
intensity at the SPE energy is much weaker than that at thi1® Weights in the two contributions become comparable. We
CDE energy(the ratio is of the order of the square of the explain the difference between the. Lgttlnger—llqwd results
ratio of momentum transferred by the light to the Fermi mo-Presented here and the Fermi-liquid results presented
mentum of the electron gas; for typical experimental relevanPreviously:>-1¢23% Our results remain inconsistent with
parameters, about three orders of magnijudais theoreti- Present experimental data, so we argue that Luttinger-liquid
cal result, however, is in qualitative disagreement with thegffects have not yet been unambiguously detected in RRS
experimental dat&®-22in which the polarized spectrum ex- experlm_ents. One possibility is that excitonic effe_cts, ne-
hibits a “double peak” structure with comparable-intensityg|eCted in the_present_and previous treatments, are important.
peaks at both CDE and SPE modes. This puzzling The paper is organized as follows: In Sgc. Il we dgvelop a
featur@®22 of a ubiquitous strong SPE peak in addition to general theory of resonant Raman scattering in Luttinger lig-
the expected CDE peak occurs in one, two, and even jiyids. We then apply our theory to calcula_te the spectrum for
three-dimensional doped semiconductor nanostructures, f@0rt- and long-ranged electron-electron interaction by using
both intrasubband and intersubband excitations. Many thed20sonic expansion method in Sec. IlI. In Sec. IV, we go
retical proposaf$—2 have been made to explain this two- beyond the bosonic expansion and calcqlate the fL_lII sfpectfal
peak RRS puzzle. However, two of us have recently argued weights qf the charge boson and spin-singlet excitations in
that within the standard theory, which neglects resonancie polarized channel. We compare our calculation to the
effects, none of the above proposed modified mechanism@revious Fermi I|qU|c_JI calculations in Sec. V. We critically
theory can even qualitatively explain the experimental datadiscuss the assumptions and resonance effects of our results
But the situation changes when resonance effects are i@d compare them with the present experimental data in Sec.
cluded. In an important paper, Sassetti and Krémesk) V- Finally we summarize our results in Sec. VILI.
first proposed that in 1D systems, the prominent lower en-
ergy SPE peak is due to “spinon” excitations whose coupling; ‘pesoNANT RAMAN SCATTERING CROSS SECTION
to light is enhanced by resonance effects. The qualitative OF A LUTTINGER LIQUID
idea that resonance effects can strongly affect the relative
absorption cross sections of different modes is indeed impor- In this section we present a derivation of the RRS scatter-
tant. Unfortunately, as we have recently noted, the theoryng cross section for a Luttinger liquid. We consider an ide-
presented in Ref. 24 suffers from two technical flaws. First, italized model of a quasi-one-dimensional system, in which
is not self-consistent: it uses a Fermi-liquid-based expressiothe electron motion in the transverse directiensandz) is
to account for the resonance effects, but a Luttinger-liquidassumed to be completely frozen due to a strong confinement
based expression to account for the conduction-band dynanpotential in both conduction and valence baid other
ics. As we shall show beloand have already mentioned in words, we consider only the lowest conduction and highest
a previous brief communicatié® Luttinger-liquid physics valence subbandOur results are likely to apply also to the
affects the matrix element in a crucial way. Second, while thecase where the resonance occurs via some other intermediate
SK calculation correctly notes that as resonance is apstate, but we have not considered this case explicitly.
proached the coupling becomes long ranged in space, it The longitudinal(x direction) motion is assumed to be
omits the equally important fact that the coupling becomedree without defects or disorder. An important feature of
long ranged also itime. quantum wires is the Coulomb interaction, which is typically
In this paper, which amplifies and extends our previousunscreened and leads to a long-ranged interaction with a
short communicatio”? we derive and present a complete, well-known characteristic forfi involving the transverse
closed-form expression for the RRS scattering amplitudes imave function’® The scale dependence of the unscreened
the Luttinger-liqguid model and calculate the resulting RRSCoulomb interaction complicates considerably the analysis
spectra in different resonance conditions at zero temperaturef Luttinger-liquid formulas, but as will be seen also leads to
We treat both the analytically tractable cases of short-rangethe appearance of additional structures in the predicted RRS
interactions and the physically relevant case of the Coulomispectra. In this section we derive an expression for the RRS
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cross section of a general model with arbitrary electron induction band. In Eq(3), the charge(spin boson energy
teraction. Subsequent sections present results for shorp(wf) is related to the interactiow(q) via®?
ranged interactiongwhere the analysis can be carried
through in considerable analytical dejaiind the more o_ [, V(p)
physically relevant long-ranged interaction, which requires wp—|p|vF 1+E' )
additional approximations.
The appropriate theoretical starting point for analysis of o
Raman scattering is the following general Hamiltonian: @p= [ploe, (5)

Hiot= Hy + Hy + Hg, + HY, (1)  Where we have assumed that electron-electron interaction is
spin independent so that the spin boson velocity is the same

whereH,, andH,, are the Hamiltonians for the valence and as noninteracting electron Fermi velocity.
conduction bands, respectively, ahl® gives the coupling Finally, for the electron-photon interaction Hamiltonian
of these carriers to externally applied radiatibly, describes  H;,, we consider only the three-leg vertex for which photon
the excitonic interaction between conduction-band electronaumber is not conservedee Fig. 1b) and Refs. 30, 33, and
and valence-band holes, and may be important in certaig4], and neglect the four-leg vertex where photon number is
conditions®! We will assume excitonic effects are irrelevant conservedsee Fig. {c)], because the contribution of the
in the energy regime of interest and will therefore Bgf  latter does not give rise to resonance effects and is*thus
=0 throughout this paper. In this case, the RRS process irmuch smaller than the contribution of the three-leg vertex in
volves only one electron excited out of the valence band, s@ear-resonance conditions. We also represent the radiation by
that interactions in the valence band can be also neglected.classical field, so that
We consider a single one-dimensional conduction subband
and a valence subband, linearize the dispersion about the H&e= 3 (9155,5'+9255,—5'){[C:,p,s(t)vr,p—k,s'(t)

Fermi level and include afat this stage arbitrajyinteraction rpss
between conduction-band electrons. These considerations + it L ot
imply + Ur’pysr(t)cr,p—k,s(t)]e + [Cr,p,s(t)vr,mk,s’(t)
t i ot
HV: E EI\‘/,pU:,p,SUI’,p,S’ (2) + Ur,p,s’(t)cr,p*'kys(t)]el }, (6)
rps

where w andk are energy and wave vector of the photon
interacting with electronsy; and g, are coupling constants

1
Ho = > v,:(rp—k,:)c,T’pvscr'p,S+Z > > V(q) for non-spin-flip and spin-flip scattering, respectively, and
rp.s r1.72:51:5 .P1.P2 their actual values are not important in our study. In the
t T remainder of this section, we present an explicit derivation of
xC Crppara2.s,Cro P28y prai2sy ) P P

"LPLd28; expressions for the non-spin-flipolarized spectrumRRS

where the conduction-band Hamiltonian can be bosonized a0ss section following from Eqg2), (3), and(6).

in the standard Luttinger-liquid theo®yielding Following our earlier work(Refs. 25 and 3f) we use
second-order time-dependent perturbation theory to calculate
Hi = 2 (wfblby + wlohoy). the rate at whichHk® causes transitions from the ground
P state|0) to some stat¢n) in which the valence band is filled

We approximate the valence-band enet‘g,\gl by a linear and the conduction-band state has changed. One finds
dispersion about the Fermi wave vector oF electrons in the

- 1 T2 ty
conduction band, W(q,7;Q) = lim ?2 dtlf dt,
T -T2 -T2
EXD ~= Qs = U\F/(rp —kp), " )
where ), =Eg+EY+E, is the RRS resonance enerfgee X(N|HIZ 2t Y H 929200y |, (7)
Fig. 1(a)]. Note that in this expression it is assumed that the

valence band is also one dimensional. If transverse motion in

the valence band is important, these degrees of freedoN’{hereq and v are photon wave vector and frequency shifts

should be integrated out, which will broaden the valence—after Raman scattering adlis the mean frequency of inci-

band propagatoNote that the structure of the quantum wire dent and scattered photons during the process. We choose the

system means that momentum transverse to the wire ne%(gﬁlivéa;?esglzt;e”&% ?/\r/]i?;r(;?rleigo;h?;rasl:mwzﬁ\éﬁ V%(;(?;‘T‘JS'Q'
not be conserved in an optical transitﬁ)n;rpS andvfpS are 9 plictty.

creation operators of electrons of chirality 1 (leftright € V?I(tancg ba}nq IS f||||ed in tTe gt:]rounq stgte,l the part of the
moving), wave vectorp, and spins, in conduction band and correfator involving valence electrons IS simple-

valence band, respectivelg! and ¢! are charge boson and t / n, T

spin boson creation operatgrs in Lputtinger-liquid the@sge <”r1vpl—q/2vsl(t2)vfz!Pz'Sz(tl)Urs,psﬁs(tl)U’4'P4‘q/2'54(t2)>0
Refs. 10 and 32 for a general reviewg(kg) is the Fermi = 5r1,r25r3’r45pl’p2+q/25p3,p4_q/2551’525%’54

velocity (wave vectoy of conduction-band electron¥(q) is VR

the effective 1D electron-electron interaction within the con- X @Fryp, W elBry p, (17t (8)
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Using the space-time translational symmetry, &f.can  Substituting Eq(12) into Eg. (10) and using the following
be further simplified by representing fermion operators inidentity for linear boson operatorgy and B (valid when
coordinate space: [A,B] commutes with bothA and B, the colons denote nor-
mal ordering and-), denotes expectation value with respect
to the ground state dfl; | ):

L )

W(g, ;) = lim J de dT é¢T-9R(OY(R T)O(0,0)),.
—00 O —0

© B = () eMB:,

Here (---), are the expectation values on the ground-statdV€ Can rewriteO as

wave function and o

i L e ORT)=LY, | dt d@ G, (-ropt,t)

ORT)=> | dx f dt d(x, )¢ (R+X/2,T +1/2) rs 20
rsJo 0

-ePrs RTOIETY .. e(I),SVU(R,—ru\F/t;T,t):’
X (R=x/2,T-1/2), (10)
where we have separately normal ordered the charge
and and spin boson operators and G,,(x,t)
=lim,_o(27a) X iho (X, D)4 (0,0) is the electron Green's

function in the conduction band. The phase operatdrs,

dng, . _ .
D= TE g EptPX) = g O-Qustopkelt s 4+ 1y V) and®, are, respectively,
p
(1 q)rs,p(R,X;T,t) = 22 g-ap/2 [T
p>0 pL

Equations(9)—(11) are our fundamental results. They show

—qj i p.
that the RRS process creates an electron-hole pair separated X{=sinh 6y sinp(rx + vgh)/2]

in space by and in time byt, with the amplitude for a given X[b! @P(R+oBT) 4 H.c]
space-time separation controlled by the functigfx,t), e
which is essentially the propagator for the valence-ban hole. + coshd,sinp(rx = vpt)/2]

Far-from resonanc@Q - Q,.s|>vike), #(x,1) is short ranged

in both x andt, so thatO becomes similar to the ordinary
density operator andlv becomes a density-density correla-

tion function?°3°As the mean photon energy is tuned closer T
. - -apl2 [0 _ .V
to the resonance conditiorh, becomes longer ranged, so that D5 (RX T =252 € \ pL{sn{p(rx vet)/2]

N >0

O becomes nonlocal in both space and time. This nonlocality " _ v

will be seen to give rise to the interesting resonance effects, X[o} e PIRYED + Hc ]} (14)
by allowing the light to couple to something other than the
dynamical structure factor. We also observe that up to thi%r
point we have not made use of the one dimensionality in any, o conic operatorgvalid under the same condition as Eq
important way: the equations may easily be generalized t?12)] '
two and three dimensions. Previous thedfig'§:23-26.28,29,33 ’

of the RRS process have been based on similar expressions B\ — /oA+By JABJ2

but with a functiong which essentially forces=0 (i.e., no ()0 =(e""%)oe (1)
retardation effecys We shall see below that the time depen- ;4

dence is very important.

We now incorporate the special features of one- (€ = o(A20/2
dimensional physics by using the standidrdosonization 0~ '
representation of electron operators in Eff)) by assuming
zero temperature,

eirkFX . . <: eA = eB:> = e_<A2>o/2e_<Bz>o/2<eAeB>
U (X, 1) = ﬁexp<| >/ i{e‘p“’ ZAPX cosh @by (t) 0 0
Y \”277& p>0 pL = _(A2>Olze_<Bz>0I2<eA+B>Oe[A’B]/2 = e(AB>0.

17)

X[b,ePIR2D + H.c]}, (13)

To calculate the expectation value of a product of normal
derings, we use two additional identities for the linear

(16)

so that

= sinh @bl (1) + sy ()] + H.c.}) : (12)
Combining all the results from Eq&®)—(17) and defining the
where ex(0-26;) = b/ pvg=y1+V(p)/ mvg is the momentum  average photon frequency relative to the resonance fre-

dependent LL exponent, and— 0* is a convergence factor. quency{), asﬁzﬂ—ﬂrrs, we obtain
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W(q, Q)= > X V\/;i;;i(q,u;ﬁ),
F1r2 S1,%

V\fsi:rsg(q,v;ﬂ):f_w de drR é”T"iqRL

X{exd (P

151P

XeXF{<¢)I’151,O'(RI - rlv\F/tj_;Tvtl)(Drzsz,o'(O! - r2U\F/t2;01t2)>0] - 1}!

where

f,o(t:0) = 621G, (- rolt ). (19

The -1 in the last line of Eq(18) arises from normal
ordering:®

The charge and spin part of the expectation values in Eq.

(18) can be calculated, respectively, to (@ zero tempera-
ture)

<q)r151,p(RlX11T1t1)®r232’p(0,xz,0,t2)>0
TP 2 i Tre
=21, Fe apleg™Prp i sin p(xq — rlvgtl)/z]
0

X Sir{p(XZ - rzvgtz)/Z:lC

+sinp(x, + ryvpty)/2]

ipR
rl,pCrz,pe

Xsinp(x + rvt)/2]C; ,Cor p€ PR}, (20)
whereC, ,=coshé, (sinhé,) for r=+1(-1), and
<q)rlsl,a(R-X1-Tatl)q)rzsz,a(QXZ-O-t2)>0
“AP oo
=250 1, ?e *Pesinp(x = vety)/2]
0
XSIMP(X, - vpty)/2]€ PRAPUET, (21)

Equations(18)<21) represent a complete solution to the
RRS cross section of a Luttinger liquid in the absence of
excitonic effects. We will evaluate them analytically and nu-

merically in the following sections.

Ill. LEADING-ORDER EFFECTS IN BOSONIC
EXPANSION

A. Overview

Although Eq.(18) is a complete closed-form expression

for the RRS cross section, it requires a numerical evaluatio
which is not simple because final results are obtained b

cancellation of rapidly oscillating terms. It is instructive to

dtlf:lsl(tl ; ﬁ)f dtz frzsz(tz ; 6)
0

(R =Tty Tt @, s, ,(0,~T00,6))o]

(18

expansion is finite because the sine function in E&8) and

(21) removes the 1d divergence in smalp region and, by
oscillating, ensures the convergence at lgpgdhe expan-
sion approach has a simple physical interpretation: the term
of ordern in the expansion corresponds to a final state with
n excited bosons.

Section Il B shows results obtained on the assumption of
short-ranged interaction between electrons in conduction
band, i.e.,V(p)=V, with an appropriate momentum cutoff.
The well-known analytical methods of Luttinger-liquidL )
theory can then be applied, yielding a physical understanding
of the features of RRS spectrum. Section Il C presents re-
sults obtained for the unscreened Coulomb interaction.

B. Results for short-ranged interaction

For simplicity here we assume that the valence-band elec-
tron velocity at the Fermi momentum of the conduction
band,vy, is much less than the conduction-band veloeity
and can be neglected. In this approximatiaiich does not
affect any essential resulfs

~ = g 1
f(t,Q) = €YG(x=0,t) ~ —— —— (22
2mi\v g tEQt) “
where
1 U UE .
a=-(-L+—=-2]=sinf, (23
4 UE Up

is the Luttinger exponent and, is an energy cutoff above
which the Luttinger-liquid model ceases to describe the
physics.[Note that here we follow the standard convention
in the literaturé? and thisa has nothing to do with the con-
vergent factor used in E@l1).] Ey is expected to be roughly
of the order of the conduction-band Fermi eneEfy*? The
time integrals can now be reduced fofunctions, and the
expansion evaluated order by order.
We first show the results for the one-boson contribution in
e non-spin-flip process. Here the spin boson term is can-
celed by the spin sum as required for the conservation of

consider the analytical approximation obtained by expandingngular momentum. We have

the exponential factors in Eq18) in a Taylor series in

(®®P)" (n is an integer and then evaluating the series term

by term. Note that in the present problefunlike in the
evaluation of the electron Green’s functjagach term in the

~  T?%-
Wi(q,v; Q) = 2 (

il A(Q,q,0) 2% S(v=aqu,), (24)
qUFUp

where the functiord, is
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[

Thus the one-boson term is&function at the plasmon en-
ergy, i.e., it gives the conventional CDE contribution to the
scattering cross section. The amplitude for excitation de

Q- qu,/2
Eo

Q+qu,/2\°
4, ) (25)
Eo

Al(ﬁ! pv 0[) = (

pends on the difference of the mean photon frequency from

the resonance condition and on the transferred momeqgtum
Far-from resonancey,=qu,<|Q| andW; =|Q|?*~2 while at
resonanc&)=0 andW, «sir’(ma/2). Thus LL effects enter

the CDE part(v~qu,) of the spectrum in two waysgfor
short-ranged interaction first, far-from resonance, they

change the frequency dependence of spectral weights from

2, the noninteracting result, 6222, Second, near-

resonancd§<qu/2) Luttinger-liquid effects resolve the
singularities which are found in the standard Fermi-liquid

expressions for the matrix elements: see Sec. V for a more

detailed discussion.
For the second-ordefi.e., two-boson contribution, we

obtain
AP(QI L - 1a)2
{fo p(q_p)|2 p.q-p.a)l

X COSH(ZGP) av—-qu,)

2
f p(p- q)

Xsint?(26,) (v = pv, = (p=-qv,]

q
b
0

p(q-p)

(- o)
v

WZ(qIV;ﬁ) =

AS(Q,p,p- g, )

AS(Q,p.q-p,&)28(v— qvg)}

(26)
with (a=p,0)

s —P1o/2 —pov, /2
AZ(‘Q’!plipZ!a) :< = 2 )

~ (ﬁ — P, /2 + pzva/2>
Eo
Q+pw, /2 +pw,l2\°

+< £ ) (27)

Note that for largeQ) (far-from resonancgeW,~ Q4+ so

+plv 12 =pyw, /2
By

)
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FIG. 2. Polarized RRS spectra calculated via the bosonic expan-
sion method for various resonance conditiofE;Q—ers. One-
and two-boson contributions have been plotted separately in order
to show their relative contributionésee text Finite broadening
factor y is introduced to express thfunction (Ref. 35. Note that
the overall spectral weights decrease dramatically off-resonance, as
indicated by the individual scale factors on the right-hand side of
each plot.

be excited via the two spinoiwra, o) process giving rise to
the so-called SPE mode atqug.

In Fig. 2, we show the perturbatively calculated LL polar-
ized RRS spectra including one- and two-boson contribu-
tions to the Raman intensity, for a particular choice of Lut-
tinger exponent The data are plotted as a function of energy
transferred at fixed momentum transfgr the different
graphs show results for different values of the laser fre-
quency relative to the resonance condition. One observes that
(i) the overall spectral weight decays very fasths moved
off-resonance, andi) the SPE peak is only noticeable near

that in this limit the two-boson term is small compared to therésonanceiii) The continuum structure arising from the sec-
one-boson term, confirming the validity of the expansion inond term in Eq(26) is visible but not very distinct. We also

the far-from resonance region. The first term in EB6)

remark that the three-boson term in the expansgimwt cal-

gives a renormalization of the strength of the CDE pole. Theculated in this papgmwill produce an additional continuum
second and third terms produce new effects appearing at segtructure lying between the SRw=qug) and the plasmon

ond order: first near the CDE peak, branch mixfsgcond

(w=qu,) energies, due to the coupling between charge and

line of Eq. (26)] processes appear, leading to a continuunspin bosons via the RRS process. In our above calculation,

absorption beginning at the CDE threshoid;quv,. Second
the spin-singlet combination of spin bosotkird line) can

we have introduced a broadening facter; 0.05%, to real-
ize the s-function pealé®
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[RS01%% LRI B A DUSUIASN VO A according to the resonance condition. Off resonance, the

_q=ol,1 ke __ one—boson : : r
y=0.05 & - two—boson two-boson-singlet-spinon peak is much weaker than the
|0-0,,=1.0 E /\ X107 charge boson plasmon peak, while their total spectral weight

is also very small compared with the near-resonance result.
il Near resonance, an additional feature appears: the two-
charge-boson contribution gives another resonance peak at
w=2wh,> wg, arising from the nonlineaq dependence of

wg due to the long-ranged Coulomb interaction. The result-
ing curvature acts to broaden the spectral weight on the
higher energy side. Next order bosonic terms will contribute
the spin-charge mixing weights frotarop, poo)-type higher
order correlations. This will introduce a continuum of rela-
tively weak spectral weight which is located in the energy
region between the spinon and the plasmon energies, as
noted previously. Finite temperature and homogeneous
broadening effect usually smear out the singularity and cause
a asymmetric continuum about the resonance p&aks.

800
L 05 N

800 |

X1072

X1

400

spectral weight (arb. units)

200
-1.0 X5x107? IV. BEYOND THE BOSONIC EXPANSION

o- T We now consider effects beyond the bosonic expansion in

00 02 04 06 08 10 the analytically tractable finite range interaction model. We

begin with the exact expression, Eq20) and (21). The
values of mean positiolR and timeT are expected to be
FIG. 3. Polarized RRS spectra calculated via bosonic expansiofoughly inversely proportional to the momentugrand fre-
method for various resonance conditions in the LL model withquency v transferred to the system. if and q are small
long-ranged Coulomb interaction. One- and two-boson contribucompared to the basic scal@s: andkg) we may use a long
tions have been plotted separately in order to show their relativavavelength approximation to evaluate the phase factors in

Raman Shift ( ®W/Eg)

contributions(see the tejt the standard way obtaining

C. Long-ranged Coulomb interaction W;i:;g(q,,,;ﬁ) = Jo dt, f:lsl(tl;ﬁ)Jo dtzfrzsz(tz;ﬁ)

We now consider the modifications arising in the physi-
cally relevant case of a long-range, unscreened Coulomb in- * - iR
teraction. As discussed elsewh®&rghis corresponds to a X dT € dRe
scale dependent Luttinger interaction paramete, '°° "w
=ayInY%(qy/q) (for g<qu) and the charge mode plasmon X{IFY ; (R=v,Tity, )]
energy3® o
X[FP  (R=v,T;ty,t5)]*
wh ~ 4agued In"(q/q). (29) Fr, (R0, Tt 1
e

Hereqy~2.5/a (a is the typical width of QWR is the mo- X[FP (= (Rtv, Tty tp)[% =1,
mentum scale below which Coulomb effects become impor- (29)

tant andag=€*/2equem (Ref. 36 for typical QWR struc-
ture. In the GaAs QWR material which was recently where the exponents ar@a:%5r1vr25152’“;1)zécrlcr2* and
studied?”38 typical LL parameters arer,~0.389 andq, «?=1C_. C_. . TheF function is
il p 27T

~1.4x 10 cm™.

The scale dependence of the interaction prevents analytic . Wit + P t)? = (X+ia)?
evaluation of the Luttinger-liquid formulas, but the bosonic Frl,rz(X;tl'tZ) = Wt - 02 t,)2 = (X +ia)?’ (30
expansion can still be carried out, although both the integrals Uri1 ™ Urp2 “«
definingf(t,€2) and those defining® must be evaluated nu- wherev?=(v,+rvy)/2 for a=o,p (v,=vE).
merically. We have not attempted a direct evaluation of this expres-

In Fig. 3 we show the one- and two-boson contributionssion. Instead, we note that the spectrum is expected on gen-
to the polarized RRS intensity of 1D QWR using Coulomberal grounds to consist of twé functions, at the CDE and
interaction parameters corresponding to the system studied BPE energies, and two continua. Thefunctions are the
Ref. 37. The basic features of the results are similar to théeatures most easily observable experimentally, and it is pos-
short-ranged interaction, having one weak singlet-spinorsible to obtain convenient expressions for their weights. We
peak at the SPE spinon energyqu,=qug arising from the  note that terms giving rise té functions at the CDE energy
two coupled spin bosons, and one strong charge boson peak SPE energy must be functions only Bfv,T and R
at the plasmon energy=qu,. Their relative strength varies -uv,T, respectively. To isolate these terms we apply the iden-
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tity ABC-1=(A-1)(B-1)(C-1)+(A-1)(B-1)+(A-1)(C - » S
~1)+(B-1)(C-)+(A-1)+(B-1)+(C-1) to Eq. (29.  Wi%a,Q)= 27Tf difrs(t) | dipfig
Only terms involving just one of the thrde functions can 0 0

contribute to thes function, so we find that for,q>0 the * o iraR (e R
intensities may be written X(tp) | dReMIH{[FT (Rt tp) 12 - 1.
lepe(Q) =W,(Q)d(v-v,q) + -+, (31) (3%
Ispgﬁ) = ( > slsz\/\/jl*sz(f)))é(v— v,Q) + -, (32 These formulas have an involved analytic structure, which
81571 includes a discontinuity when either the incoming or the out-
where the ellipses denote the continuum terms andahe 90ing laser frequency is precisely in resonance with the
function coefficients are, respec“ve'y’ Valence band to Conductlon band Ferm| |eVe| energy dlffel’-
. . ence. For large frequencies, the correct asymptotic behavior
W.(q,0) :87Tf dt,f, . (t) | dt :52 arises from canC(_aIIation among oscillating terms. To mgke
the structure manifest and obtain forms which are convenient

" for numerical evaluation we employ the further series of
X(tz)j drR e"qR'{[F‘l’vl(R';tl,tz)]“p—1}, tLansformations given in the Appendix, leading for
|Q|>v,,q/2 to

(33
|
1
2(3/2)+asin< 7(1+a) )F(l 2a) co26(cot 6)°
W, (0,0 > v,0/2) = — f dg f do
Q-2 "1+ cos 2 cos X
X 1 1 1-2«
(Cow_z;_q w) (COS 4+ 208 \/1+cos:¢cosza)
20 2 20 2
(39)

~ 22rap (1 — 9 cos 2
W,(q,|Q] > v,q/2) = —( o) d¢ f do
\/

QL2 '1+cos 2 cos ¥
y 1-2« 1 1-2«
1+ cos2bcos 1+ cos2bcos ¥
(¢_q\/+2ﬁ) ( poiel [Lrcos Boos D )
20) 2 20 2
(36)
For Q| <v,,9/2 we obtain
~ 2(5/2)-a ( +a ) f J cog 6(cot H)“
W (0,|Q <wv.0/2) = —-Sin I'il-2«a d do
Ha [ <v,52) (v, ) ¢ "1 - cos 2 cos X
1 1
X ~ T2t 1-2a (37
(\/1—cos%cosw+@5in¢) (\/1 cosdcosd ZQ |n¢>>
2 v,q 2 v,d

and

165101-8



THEORY OF RESONANT RAMAN SCATTERING IN ONE-. PHYSICAL REVIEW B 70, 165101(2004)

- 2(3/2)—a 4 2 cos ¥
W,(q,|Q| <v,0/2 :—_Fl—Zaff df do—
(0,19 <v,9/2) o) ( ) i ¢ N v
1 1
X ~ 1-2a ~ 1-2a (39
l-cos2bcos2d 2O . l-cos2bcos2y 20 .
———————+—=sin¢ ———————— - —=sin¢
2 v,4 2 v,q

The change in analytic structure occurring Ho| results calculated from Eqg35)~(38). For clarity of presen-
=v,,0/2 is _manifest in these expressions by thetdtion ~we have removed the prefactorsl'(l

factor of \1+cos2pcos 2 in the denominator. In the —2@)/(v,,9)'** and have expressed the dependence on la-
|§|<U q/2  regime \;m and the Se€r frequency via the ratio of the laser frequency measured
PO ‘

[V1-cos 2 cos 20/2+(2Q /v +a)sin ¢]1~>* have singulari- from resonancé) to the mode frequency (note that at fixed
ties at the same point, Ieadirp19 to a strghgt still integrable momentum transfeq the SPE and CDE mode freguenmes
) . o '~ will differ). Far-from resonance, the CDE intensity is seen to
singularity at=6=0, which is absent fol2[>v,,0/2. To e much larger than the SPE intensity, but close to reso-
understand the singularity one may expand for srfall,  hance, the two are comparable. The main panel of Fig. 5
finding the leading behavidsee the Appendix shows the ratio of the SPE to the CDE absorption. We see
that the ratio is only appreciable if the incident photon en-

1 20 ergy is essentially on resonance. The ratio exhibits a deriva-
W oo~=3 ( ) (19 < v, ,0/2) (39)  tive discontinuity (seen more clearly in the ingeat |Q|
P a .o ne =v/2 (here v=v,,q represents the resonance energy for

charge and spin modes, respectiypthe on-resonance ratio
with J,, a function with an additional integrable divergence atis about 0.5 independent of the Luttinger expongi@f
|S~1|=vp ,0/2. The extra contribution arising from E¢39)  course the factors of velocity which have been removed from

leads to steps in the CDE and SPE intensities as the fréhe results will lead to an additional dependenceaon
quency is moved across resonance, with magnitude diverging
in the noninteracting limite— 0.
Figure 4 shows, on a logarithmic scale the CDE and SPE
V. RPA CALCULATION

. In order to compare our calculation to previous literature
- — SPE a=0.1

P - SPE =03 | we present the analog, for the model considered here, of the
— = CDE ¢g=0.1

InfT 1

IsPla/I(‘l)lz

g/ Te ]
[ %3

5 5 * RPA 0=03
2A0-0 )w L T2 Reac=dl
L — LL 0=0.1
FIG. 4. Logarithm of polarized-channel Raman scattering cross T ]
section (normalized to appropriate mode velogityirgs plotted 0 ' ; ' J@
against incident laser frequen@yormalized to mode excitation fre- 2AQ-Q )

quencyv=uv, ., and measured from the average of incident photon

resonance energy and outgoing photon resonance energy with re- FIG. 5. Comparison of ratio of-coefficients for CDE and SPE
spect to the resonance ener@y), for two different values of the absorption for Luttingersolid and long-dashed linpgnd RPA-
Luttinger exponenta. The plotted intensities are coefficients &  Fermi liquid (dash-dot and short-dashed linesodel, normalized to
functions describing coherent char¢@DE) and spin(SPB final appropriate mode frequencies and plotted against incident laser fre-
states and are computed via Luttinger-liquid methods as describeguiency(scale as in Fig. ¥ Inset: same ratio, displayed in linear

in the text. scale.
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p+:, o+ A.35 We follow this procedure here, but emphasize that be-

& ~

A cause the behavior in the regith| < »/2 is determined en-
tirely by this phenomenological parameter, our results in this
region have, strictly speaking, no meaning. We obtain

p,® ~ ~
_1( O+ wz) _1( - v/z)
tan -tan | ——

A A
D1=1II(»,q)

(¢))

A
(42

Here

FIG. 6. Feynman diagrams considered in evaluation of RPA to 1 1 1
unpolarized RRS cross section. Diagram 1 gives the dominant con- (v,q) = ( — + ' )
tribution to the SPE absorption. Excitonic interactiofssich as 2mup\v—vgq—id v+uvgQq-id

those shown as dash-dot lines in the lower left corner of this dia- v 1
gram are not considered in this paper. Diagram 2 gives the domi- =5 (43)
nant contribution to the CDE absorption. TUF V™~ UEq

The analytical expression corresponding to the diagram
Fermi-liquid calculation discussed extensively in previous|gbeled 2 is

works15-1823.30 The previous calculations neglect back-

scattering entirely, and treat the forward scattering part of the 5

interaction in the random-phase approximatigPA); we D2=(D22) 1+, (44)
make the same approximations here. We obtain analytical X

expressions apparently not given in previous literature. Weyith

consider here a model with short-ranged interaction, param-

etrized by a constant amplitude The CDE feature is then a dp
zero-sound collective mode with a velocity shifted from the D22=-T> f Z_Gd(iQ +iv/2 +iw,p+0/2)
Fermi velocity by the interaction strength. “n ™

We evaluate the diagrams shown in Fig. 6. The analytic XGy(p+q,iwy +iv)G(piiw,), (45)

expression corresponding to the diagram labeled 1 is

d . . .
i X:TE fZ—pGC(p+q,|wn+|V)Gc(pa|wn)
D1=-TY, fz_Gﬁ(iQ+iv/2+iwn,p+q/2) o T
a) a
n _ (veQ)? 1
XG(p + Giwy + 1) Ge(p,iwy). (40) ) 2 - vEg”

TUE V

(46)

S_ettjng the valence-band velocity to zero, an.alytically con-The arguments leading to E@2) may be repeated here. The
tinuing on the laser frequendy and measuring it from reso- divergence is weaker; indeed the obtained expressions are

nance and performing the frequency sum yields finite everywhere except 46)|=v/2, where there is a loga-
rithmic divergence. Introducing the same broadening as

above yields
f dp 1
Dl=-| -
2miv+ep—epg
><< fo-1 forg=1 ) (41) D22:—f¥. ! <~ =1

~ - = L + - H

(Q+i1}/2 +8p)2 (Q+iV/2 +8p+q)2 iy €p~ Epiq (Q+IV/2 +8p)
wheref, is Fermi distribution function. We next linearize the - ~—me>
conduction-band dispersion, perform thentegral (bearing (Q-i1vI2 +ep,q)

in mind that we must take the principal va)udrop terms of - s o

order vq/Eg, and analytically continue on. Unlike the - 1I(q v)lln (Q+v2)*+A (47
Luttinger-liquid expressions obtained in previ~ous sections, 2 (5_1}/2)2_'_[\2 '

this expression as it stands is infinite in the raff@e< vq/2.

Previous work&>3°resolved this divergence by introducing a The total unpolarized RRS cross section, in this approxima-
phenomenological broadening parametrized by a quantityion, is thus
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tan_1< O+ V/z) ) tan_1< 0- vlz) }Inz[ (Q+v/2)2+ Az] -
A A . 4 [ (Q-v2)2+A2

lrrs=11(q,») A 1+
D+ 2 -2 L o| @+ w272+ A7
tart -tar? 2 = .
1w A A, w A L@-u2?eA 8
- TUE 1/2—1),2:q2 A TUE 1/2—v’zjq2

with v,=ve\1+(V/7vg). Observe that if the phenomeno- tent to which a Raman scattering has observed, or can be
logical broadening parametdr is set to O the RPA approxi- expected to observe, the evidence for Luttinger-liquid behav-

mation to the RRS intensity diverges whéb=+p/2, in 10T in quasi-one-dimensional systems.
other words when the incoming or the outgoing photon is in
resonance with a transition of the system.

From these formulas the SPE and CDE intensities may . . ) ]
easily be obtained. We have We note that in the calculation presented in this paper

both Luttinger-liquid and Fermi-liquid calculations require
1 (0,2, (Q+1/2)2+ A2 three assumptions.
In o (v=aqu,), (i) The photon energy and momentung transferred to
Q-v2)"+A the one-dimensional electron system are small in comparison
(490  with the Fermi energy and Fermi momentum of the one-
dimensional electron system.

(ﬁ N V/2> (ﬁ B V/2> _ (i) 'I_'he Raman process involves excitation fro_m a one-
tant —tant dimensional valence band to an empty state in a one-
leooz —— A A dimensional conduction band, followed by decay of an elec-
SPE™ 2u¢ A tron from a filled state in the conduction band into the hole

state in the valence band.
(i) The excitonic correlations between conduction-band
states and the intermediate st@tme hole in the valence
) S(v—qug). (50 band and one additional electron in the conduction pand
may be neglected.

Assumption(i) is essentially a condition that the experi-
mental resolution is sufficient to reveal the low-energy phys-
ics of the system of interest. From the theoretical point of
] o ~ ] view it could easily be relaxed at the expense of introducing
tinger liquid), but that for all )| <v, ,/2, the divergence of 4 more complicated description of the conduction band, i.e.,
the SPE ternmicut off here by a small value of the phenom- qnsidering the curvature of band structure about the Fermi
enological parameteh) yields a large value of the ratio. surface.

Assumption (ii) is clearly applicable to strictly one-
dimensional systems such as carbon nanotybéere the
valence band is clearly one dimensionblut may not be

In this paper we have presented a complete analyticapplicable to quantum wire structures created by lithographic
theory of resonant Raman scattering in Luttinger liquids, andr molecular-beam epitaxyMBE) techniques on a three-
for comparison we have also given the analogous results fatimensional substrate. In this situation, valence-band carriers
what is referred to in the literature as the Fermi-liquid ap-may be able to move transverse to the wire because momen-
proximation. In this section we discuss the implications oftum transverse to the wire is not conserved in the optical
our results. In Sec. VI A we outline the essential assumptiongbsorption process. In this case the functigx,t) in Eq.
underlying the calculation and discuss how these can affectll) must be integrated over a range of transverse momenta,
the results and if they may be relaxed. In Sec. VI B weleading to a broadening of the resonance. However, assump-
compare the excitation spectra of the Luttinger-liquid modetion (ii) may also be relaxed, if only the intermediate state
and the standard Fermi-liquid model, and show why theyof whatever origin disperses only along the wire.
lead to qualitatively similar Raman spectra in many one- The crucial assumption i§ii ), neglect of excitonic corre-
dimensional systems. lations. These are likely to play a crucial role in the QWR

Finally, in Sec. VI C we compare the near-resonance RRStructures by keeping the valence hole near the wire and
spectrum calculated in these two models and discuss the etierefore allowing a sharp resonance to occur. Since we have

A. Assumptions

lcpe=

Buev\vE

_ ilnz( (Q+/2)2+ A2
4v \ (Q-v2)2+ A2

The CDE/SPE ratio is plotted in the inset to Fig. 5 for
=0.1v. We see from this inset that the ratio is generically
very small (smaller than the corresponding ratio in a Lut-

VI. DISCUSSION
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neglected these excitonic correlations in the theory presentes ,(q)|qg| with velocity v,(g) greater than the Fermi velocity
in this paper at several points, it cannot be trivially modifiedvg in the long wavelength limitg— 0).
to include them in a fully self-consistent way. Therefore con- The other class of states, referred to in the Raman litera-
struction of a self-consistent theory including excitonic ef-ture as single-particle excitatiai®PB, are the particle-hole
fects in the Raman scattering process is an important opetontinuum states. In two- and three-dimensional systems,
issue in the field. We will briefly discuss the possible exci-these excitations exist in the ranges@<uvq; in d=1 they
tonic effects to the Raman scattering spectroscopy in Se@xist only in the rangeveld|-(veg?/2po) <|v| <vglq|
VIC. +(veq?/2po) With po= v/ (P eyl p|p=p )] being a measure
By combining the three assumptions given above withof the curvature of the quasiparticle dispersion. In any di-
standard second-order perturbation methods, we obtained rerension, the SPE or continuum excitations make an impor-
sults, presented in Sec. IV and E¢35)—38), for the reso- tant contribution to the specific heat and to most response
nant Raman scattering intensities of a one-dimensional eledunctions. However, the contribution of the continuum exci-
tronic system described by the Luttinger-liquid model. Fortations to the structure factgdensity response functipris
comparison, we also presented analytical expressions for thgpically much smaller than that of the CDplasmon
Raman intensities of the previously discussed Fermi-liquidnode. In higher dimensiofd> 1) the CDE contribution to
model (in which the only electron-electron interaction con- the structure factor is larger than the SPE contribution by a
sidered is forward scattering in the density channel, treated ifactor of the dimensionless long wavelength interaction
the RPA. In the far-from resonance regime, we showed thaktrength, which for a charged Fermi liquid involves factors of
a perturbative treatment could be applied, and this was use@r/q)%* arising from the long-ranged nature of the Cou-
to provide a detailed characterization of the different featuresomb interaction(here gy is the Thomas-Fermi screening
of the spectrum, including CDE and SPE peaks and a conength.
tinuum absorption and the dependence of the intensity of |n one-dimensional system the factor arising from the
these features on the difference of the laser frequency fror@oulomb interaction is only logarithmic; however, the spe-
resonance. We also obtained simple, easily evaluated expregial kinematics of one-dimensional systems lead to addi-
sions for the integrated intensities in the SPE and CDE peakgonal constraints. Imi= 2 the low-energy physics of nonor-
for all values of the laser frequency, and from these we obdered Fermi systems is described by Fermi-liquid theory,
tained results for the ratio of SPE to CDE intensities. In thewhich is essentially the RPA approximation but with interac-
following two sections, we will respectively discuss the re-tijon vertices renormalized bﬁnite amounts by high-energy
sults and physical interpretation of our theory applied in theprocesses. Ind=1 these renormalizations destabilize the
two different regions of interest: far-from resonance regionFermi-liquid description entirely. However, the RPA may be
and near-resonance region. a reasonable intermediate energy-scale approximation, and
as explained in Sec. V has been used successfully to model
Raman scattering. In this context the terms RPA and Fermi
liquid are synonymous. Within the RPA the SPE contribution
to the structure factor is smaller than the CDE contribution
The Raman process creates a particle and a hole in tHey a factor of(q/py)%. Therefore, in the linearized dispersion
conduction band, at a space-time separation controlled by tHanit (py— ), the SPE contribution to thd=1 structure
difference of the laser frequency from a resonance conditiorfactor vanishes exactly within the RPA. Indeed this vanishing
The particle-hole pair generated by Raman scattering is ican be shown via a Ward Identifyto occur to all orders in
general not an eigenstate of the conduction-band Hamilthe interaction. We emphasize, however, that in the RPA to
tonian, but decays into the true eigenstates. The importarthe one-dimensional electron gas, the SPE excitations still
question, therefore, is “what properties of the eigenstates amxist, and can be revealed either by considering response
revealed by Raman scattering.” In the one-dimensional confunctions other than the structure factor, or from the specific
text one may sharpen this question to “what aspects of thheat. A specific example of a response function other than the
Raman spectrum reveal characteristic features of thetructure factor is provided by Raman scattering: far-from
Luttinger-liquid physics expected to occur in one-resonance the leading contribution to the Raman vertex is the
dimensional systems?” In order to answer this question predensity operator, but corrections, whose magnitude depends
cisely, it is necessary to discuss the eigenstates of onen the difference of photon frequency from resonance, in-
dimensional electronic systems. volve other operators. A detailed discussion of these opera-
We are concerned here with polarized channel Ramartors may be found above in the context of Efjl).
scattering in systems with negligible spin-orbit coupling and Now let us consider the Raman scattering spectrum in
therefore must consider excitations which do not change theuttinger-liquid model, where two classes of elementary ex-
total spin of the system. In a Fermi liquid with repulsive citation exist: charge and spin bosons. States of total spin
interactions, there are two kinds of relevant states. One is theero may be constructed from states of two or more spin
zero sound(or plasmon mode, referred to in the Raman bosons, even if no charge bosons are present, and these may
literature as the charge density excitati@DE) mode.(In make important contributions to many response functions
principle there are other collective modes, but they are rareland to the specific heat. In the linearized dispersion limit,
important in practicg. The CDE excitation typically has a states involving only spin bosons do not appear in the struc-
well-defined energy-momentum dispersion relation  ture factor, because it couples only to the charge sé&ffr.

B. Excitation and Raman spectra in Luttinger
and Fermi liquids
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However, curvature in the dispersion leads to charge-spition. As this occurs, operators other than the structure factor
coupling and in particular to terms coupling a charge bosoregin to contribute to the Raman spectrum, and the nature
to two spin bosons. Thus, just as in the Fermi-liquid case, iand coefficients of these operators may be used to distinguish
nonlinearity in the underlying dispersion is neglected, onlybetween the two different theoretical models.
the CDE mode is visible in the structure factor but if band-  In discussing the near-resonance behavior it is helpful to
energy curvature is included, SPE contributi¢ieo or more  refer to Fig. 6 which shows the diagrams commonly consid-
spin bosons at energy=qug) appear at ordefq/py)2 Of  ered in the Fermi-liquid treatment of the RRS process. From
course such multispinon contributions also appear in re;_hese diagrams one sees that in the Fermi-liquid approxima-
sponse functions other than the structure factor. ThereforlOn: the states created by the Raman process have nonvan-
1IShing overlap with the two sorts of exact eigenstateBE

even though the interpretations are different, the off- . ; ;
resonance Raman scattering spectra calculated within Fernﬁpd SPE of the system. Diagram 1 gives the dominant con-

- : X ibution to the probability of creating a SPE excitation. The
liquid r_nodel and_ Luttinger r_nodel_are basically the same, fordirect overlap between the state created by the Raman pro-
the spin-unpolarized one-dimensional electron gas.

- g cess and the exact eigenstate of the system means that in the

However, the situation changes when considering a 1Rpgence of excitonic correlations between the particle-hole
spin-polarized electronic system. This could be realized ihair and the intermediate resonant statetched as dash-dot
practice by applying a magnetic field large enough to fullyjines in diagram 1 of Fig. 6 this diagram diverges strongly.
Spin polal’ize the conduction band. It is believed that a Cor'(The diagram m|ght also diverge Strong|y even in the pres-
rect treatmentfor example, via the bosonization method of ence of excitonic effects: this point has not been investi-
the Luttinger modelwould predict that thenly elementary  gated) Indeed one sees from E2) that very near reso-

excitation is a boson, which is roughly equivalent to the zerg,5ce the term diverges é@li v12)~* and(in the absence of

fr?und_og plaslimt)tn modlg e?:jcitation of alllzermi quuid.fThlf, INexcitonic correlations or of the phenomenological broaden-
€ spiniess “UtNger-iiquid case, in af response tunc Ions|ng A) is infinite for || < /2. On the other hand, one sees
and also in the specific heat, only superpositions of plasmozﬁ

. ..~ ffom diagram 2 that the coupling of the Raman process to the
would _be observed, whereas in the so-called Fermi liquid-HE o Gitation goes through a range of virtual stategre-
. ; . &Sented by the triangles in diagran this broadens the reso-
as in the spinful case—one zero souiod collectivg mode  5nce effect so that the divergence as resonance is ap-
and one electron-hole continuum. In the language of Ramagoached is only logarithmic and the result is finite for

scattering experiment, only the CDE mode would be vmblqm < /2. However, the one-dimensional kinematics lead for
in the Luttinger-liquid case, no matter how closely the sys-~

tem is tuned to resonance, whereas for a hypothetical 182> ?/2 to a much greater CDE amplitude than a SPE am-
Fermi liquid, excitation at the SPE energy would becomeP!itude, so that the SPE/CDE ratio only becomes of order
visible as the laser frequency is tuned to resonadce to unity very close to the resonance condition. Further, for
the interband scattering matrix elemgnt |Q|< v/2 the Fermi-liquid approximation to the SPE inten-
To summarize this section: as long as the electron numbe¥ity iS, strictly speaking, infinite, and must be regularized by
is not changed in the conduction band during the Ramagonsideration of processes so far omitted from the approxi-
scattering procesé.e., off-resonance regimethe apparently mation. At present there is no theory of this regulanzatlon,
profound differences between a Luttinger and a Fermi liqui hich has been parametrized by a phenomenological broad-

produce only minor and quantitative differences in the exci—enmgA' Because they are entirely determined by the regu-

tation spectrum of a spin-unoolarized svstem. In both mool[arization parameter, the Fermi-liquid results presented in
P P P y : this paper in the near-resonance regime are probably mean-

els, one has two classe_s of excitation, which may _be I‘fjlb(éleﬁ%gless. We suspect that this issue also arises in the higher
CDE and SPE, respectively, in the Raman scattering experly; - ansional calculations performed so far

i 2
ment, where the latter is smaller by a factor(qfpy)® due to In the Luttinger-liquid approximation, the particle-hole

the weak nonlinearity of the band structure. However, for &5ir created in the Raman process has vanishing overlap with
spin-polarized electron gas, there is an important differencgp, exact eigenstate. This has three consequences: first, a
between a Luttinger and a Fermi liquid: in the Fermi-liquid ¢ontinyum absorption arising from multiboson excitations is
approximation a SPE branch of excitations still eX'StS’predicted to lie in between the SPE and CDE peaksually
whereas in a Luttinger liquid it does not. this continuum would exist also in a Fermi liquid, but would

be much weaker Also, away from resonance, the SPE/CDE
ratio is larger than in the Fermi-liquid approximation, and it

h h h h h | c\j/aries with a power related to the Luttinger liquid exponent
The previous sections have shown that in the polarize . : ) s
channel of RRS experimerit.e., no spin flipping of final o Finally, in the on-resonance regini@|<»/2 both SPE

. . . . and CDE contributions are predicted to be finite, although
electron configuration the differences between the predicted o . o ~ o
Raman spectra of a Luttinger-liquid and Fermi-liquid alo_both exhibit a discontinuity whem|:v/2. Fermi-liquid be-
proximations to the one-dimensional electron gas are quari@vior can be recovered by taking noninteracting lifait
titative, not qualitative, as long as the photon energy is off-—0) because the magnitude of the d|scor_1t|r_1u|t3a|§ and
resonance. However, a significant distinction between thesgence diverges in the noninteractifg— 0) limit.
two models may arise from the Raman spectrum changes as We suggest that in the on-resonance regjiftle- v/2 nei-
the laser frequency is brought closer to a resonance condiher the Fermi-liquid nor the Luttinger-liquid calculations are

C. Physics of RRS spectrum—near resonance
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likely to be quantitatively reliable, because excitonic corre-was supportedD.W.W. and S.D.S.by US-ONR, US-ARO,
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nance the intermediate state lasts so long that it must interact

with the conduction-band excitations, and these interactions APPENDIX: EVALUATION OF = 6-FUNCTION

are likely to have a nontrivial interplay with the nonanalyt- CONTRIBUTIONS

icities arising wherjQ|=v/2. Several qualitative features of
such excitonic effects can be expected: First, the attractive
interaction between the excited electrons above the Fermi This appendix presents the additional transformations
surface of conduction band and the hole in the valence ban@eeded to put Eqg33) and(34) into forms convenient for
can form a metastable intermediate state of excitons, whicflrther discussion and numerical evaluation. We have to deal
should have strong binding energy due to the geometricallyvith an expression of the forrfnote that for simplicity, we
tight confinement potential in one-dimensional quantum wiredefine} to be the light frequency with respect to the reso-
system. Therefore the assumpti@in discussed in Sec. VIA nance energy throughout this appendix

can be further relaxed and one may treat the valence-band © g, @ @Hety (= g, g i(Q-ie)t

hole to be a 1D quasiparticle as what we assumed in this W:J L J 2 o ltuty) (AL
paper. Second, the existence of excitonic metastable interme- 0 B

diate state may change the position of resonance since ”\]/ﬁth e—0"
binding energy of a 1D exciton can be of order of several

meV*! A recent RRS experimetit in a two-dimensional * R

quantum well system apparently observed two resonances. H(t,t2) :f dR " °F(ty,t2,R) (A2)
Finally, the scattering matrix element have to be calculated -
by considering the overlap between the exciton state and thend F given by
electron-hole continuum state, which will certainly broaden

1. Overview

1+a
t1 0

being an infinitesinal converging factor and

vA(ty +1p)?

the resonance effects near the resonance condition. The spec- - (R+ig)?
tral weight distribution as a function of photon energy trans- F= 4 1
. . =| 55— , (A3)
fer v at a given momentum transfgrwill also be changed vi(ty - ty) o,
due to such inhomogeneous broadening. But so far we could 4 —(R+ig)

not speculate if the Luttinger-liquid properties of a one-

dimensional electronic system can be unambiguously obwhere for the charge case=v, and f=(1+a)/2, while in

served in the RRS spectrum even after including the fullthe spin casey=v,=vr andB=1/2. As inSec. Il we have

excitonic effects. A more complete theory to include suchassumed that the valence-band velocity is much smaller than

nontrivial effects is necessary for the future study. the Fermi velocity in the conduction band. The analytic
structure of theé= function means that we can writaote we

Vil. SUMMARY have also rescaleR)
In this paper we have used the full Luttinger-liquid model B qR

to analytically and numerically calculate the RRS spectrum I(ty,t) =2 Sir(W,B)J dRsin(—)Fz(B,A, R (A4)

for both polarized and depolarized spectroscopy, and have A 2

presented for comparison a Fermi-liquid calculation. We ob-With

tained results for both short-rangéstreened Coulomkn-

teractions and for the more physically relevant case of the B?-R?\#

long-ranged Coulomb interaction. We clarified the difference Falti 2 R) = R2 — A2

between the Fermi-liquid and Luttinger-liquid results, and

argued that proper treatment of excitonic interactions- ~ andB=t;+t; andA=[t;~t,|. .

glected in all treatments so fais essential for obtaining By making the following changes of variablest

reliable results. Our results in Figs. 2 and 3 show that the~ VU;u—uv+A?v— yB?~A?sin § and restoring the explicit

RRS spectra of both short-ranged and long-ranged interadorms of B andA we obtain

tions are qualitatively similar, except that in the unscreened jﬁ/z

(A5)

Coulomb case the momentum dependent charge velocitit,,t,) = 2 sin(7B)tt, de
makes the phase space of multiboson excitations to be highly

restricted, which shift the multiboson excitations to higher

0

energy than the plasmon energy=gv,, causing such un- (cos6)*%#(sin 0)1‘zﬁsin%q\/tf+t§—2t1t2c0529
usual broadening. The SPE-CDE ratio is generically larger in % :
a Luttinger liquid than in a Fermi liquid, except on- \r’t§+t§— 2tit,cos 29
resonance, where excitonic effects probably invalidate either (A6)
calculation.
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tl — | T1» (A?)
ty— —im, (A8)
getting
- d7'1e_QT1Joo dr,e 7
W= f - (7)) (A9)
o Joo @ T
with
1(71,7)

72

= ZSiI"(’TTB)Tngf do

0

(cos#)+%A(sin 49)1‘2ﬁsinhv?q 7+ 7+ 27,7,C0S P

X
V7 + 72+ 27,7,c08
(A10)
It is then useful to define
71 = 7COS ¢, (A11)
T, =TSN ¢, (A12)

so that

2 2 o dr .
W=2 Sir(ﬂ',B)J dd)f def —ae—QT(COS([ﬁSln )
0 0 0 72

. _ . /—
(cos8)**%(sin 6)* 2ﬁsmhv—qT\rl +sin 2p cos ¥
2

X
V1 +sin 2p cos ¥

(A13)

The 7 integral may now be done. It is convenient to shift the
origin of the ¢ integral by /4 and symmetrize irp and to

combine the two terms arising in the spin term, getting

1+
2(3/2)+“sin(—w( 5 a)>F(1 - 2a)

Wp = Ql—Za
w4 2
cog d(cot )¢
X f do f dé— ( )
0 0 Vv1+cos 2bcos 2%
[ 1 1-2a
8 1 25 Cos 2
v,q + COoS 2p cos
cos —p1 ittt Siedetadiund
( ¢ 2Q) 2 )
1 1-2a
) v,q 1+0032;S00329) '
coso + —p1 Pt
O
(A14)
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2(1/2)+a1"(1 _ 2&’) 4 /2 ) cos %
Wa = T 120 d¢ de T
Q 0 o V1+cos2hcos
1 1-2«

(cos¢— ﬂ\/l + Cos 2p cos 29)

2Q) 2
1 1-2a
VEQ \/1+coszzbcos 29)
CoOSp+ ——\|————————
E A

(A15)

This formula has integrable singularities @&t 6=7/2 and
0=/2 and is convenient for numerical evaluation.

3. Evaluation, small Q

If Q<wvqg/2 then the rotation cannot be made and we
should instead define

t; =t cose, (A16)

(A17)

Transformations similar to those leading to E413) then
yield

t, =t sin ¢.

(5/2)-a

(qu)l—Za

w4 2
cos 6(cot H)®
xf dqsf do ( )
0 0 V/l—COS225C0529
1

(\/1—0032;500329 20 )1'2“
———————+—=sin¢
2 v,q

. 1+
W,(Q) = sm( = a)l“(l - 2a)

X

1

+
(\/1—0032;5c0329 20 )1_2"‘
= - " sing
2 v,Q

(A18)

and
(3/2-a

Mg

'l -2a)

4 /2
cos ¥
xf dd;J dé—
0 0 V1 -cos 2bcos 2%

1

l-cos2bcosd 2O 1-2n
— +—sing¢

X

o

1

_(\/1—0052;500329 20 . )1'2“'
T sing

o

(A19)
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We observe that unlike EqgA14) and (A15) these expres-
sions have a double singularity at small¢ and indeed lead f deode |ch:f fdg dlﬁm
to RRS spectra of quite different magnitudes. To see this V2g=(cosy,
point more clearly, consider the integrahg,of Eq.(A18) as 1
¢,0—0. We obtain X >0 1-2a
(1 +——sin l//)
len= (1)a : - v
ch=\ , [ 12 1-2a
7] VZ\'¢ + 02 ( 2. 2 ZQ ) 1
[d?+ P+ —
V¢ qucﬁ + RGE (A21)
1 1- —qsm 7
1%
+ o0 i (A20) P
(\,'¢2+ P - _¢>
v,
Changing variables t@=¢ cosy and ¢={ sin s we have Integration over/ gives an answer proportional to d./
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